Theoretical and Mathematical Physics

, Volume 152, Issue 3, pp 1225–1233 | Cite as

The maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices



We compute the largest dimension of the Abelian Lie subalgebras contained in the Lie algebra \(\mathfrak{g}_n \) of n×n strictly upper triangular matrices, where n ∈ ℕ \ {1}. We do this by proving a conjecture, which we previously advanced, about this dimension. We introduce an algorithm and use it first to study the two simplest particular cases and then to study the general case.


nilpotent Lie algebra maximal Abelian dimension strictly upper triangular matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Benjumea, F. J. Echarte, J. Núñez, and A. F. Tenorio, Extracta Math., 19, 269–277 (2004).MATHMathSciNetGoogle Scholar
  2. 2.
    V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations (Grad. Texts Math., Vol. 102), Springer, New York (1984).MATHGoogle Scholar
  3. 3.
    F. Iachello, Lie Algebras and Applications (Lect. Notes Phys., Vol. 708), Springer, Berlin (2006).MATHGoogle Scholar
  4. 4.
    P. J. Olver, Applications of Lie Groups to Differential Equations (Grad. Texts Math., Vol. 107), Springer, New York (1986).MATHGoogle Scholar
  5. 5.
    C. Cadeau and E. Woolgar, Class. Q. Grav., 18, 527–542 (2001).MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    S. Hervik, J. Geom. Phys., 52, 298–312 (2004).MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    M. Boyarchenko and S. Levendorskii, Proc. Natl. Acad. Sci. USA, 102, 5663–5668 (2005).MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    N. Jacobson, Bull. Amer. Math. Soc., 50, 431–436 (1944).MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    I. Schur, J. Reine Angew. Math., 130, 66–76 (1905).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Departamento de Geometría y Topología, Facultad de MatemáticasUniversidad de SevillaSpain
  2. 2.Departamento de Economía, Métodos Cuantitativos e Ha Económica, Escuela Politécnica SuperiorUniversidad Pablo de OlavideSpain

Personalised recommendations