Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Abelian Chern-Simons vortices and holomorphic Burgers hierarchy

  • 53 Accesses

  • 7 Citations


We consider the Abelian Chern-Simons gauge field theory in 2+1 dimensions and its relation to the holomorphic Burgers hierarchy. We show that the relation between the complex potential and the complex gauge field as in incompressible and irrotational hydrodynamics has the meaning of the analytic Cole-Hopf transformation, linearizing the Burgers hierarchy and transforming it into the holomorphic Schrödinger hierarchy. The motion of planar vortices in Chern-Simons theory, which appear as pole singularities of the gauge field, then corresponds to the motion of zeros of the hierarchy. We use boost transformations of the complex Galilei group of the hierarchy to construct a rich set of exact solutions describing the integrable dynamics of planar vortices and vortex lattices in terms of generalized Kampe de Feriet and Hermite polynomials. We apply the results to the holomorphic reduction of the Ishimori model and the corresponding hierarchy, describing the dynamics of magnetic vortices and the corresponding lattices in terms of complexified Calogero-Moser models. We find corrections (in terms of Airy functions) to the two-vortex dynamics from the Moyal space-time noncommutativity.

This is a preview of subscription content, log in to check access.


  1. 1.

    G. E. Volovik, J. Phys. C, 20, L83–L87 (1987).

  2. 2.

    L. Martina, O. K. Pashaev, and G. Soliani, J. Phys. A, 27, 943–954 (1994).

  3. 3.

    N. D. Mermin and T. Ho, Phys. Rev. Lett., 36, 594–597 (1976); Phys. Rev. B, 21, 5190–5197 (1980).

  4. 4.

    L. Martina, O. K. Pashaev, and G. Soliani, Theor. Math. Phys., 99, 726–732 (1994).

  5. 5.

    Y. Ishimori, Progr. Theoret. Phys., 72, No. 1, 33–37 (1984).

  6. 6.

    M. A. Lavrent’ev and B. V. Shabat, Problems of Hydrodynamics and Their Mathematical Models [in Russian], Nauka, Moscow (1973).

  7. 7.

    D. V. Choodnovsky and G. V. Choodnovsky, Nuovo Cimento B, 40, 339–353 (1977).

  8. 8.

    F. Calogero, Nuovo Cimento B, 43, 177–241 (1978).

  9. 9.

    F. Calogero, D. Gómez-Ullate, P. M. Santini, and M. Sommacal, J. Phys. A, 38, 8873–8896 (2005).

  10. 10.

    A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Vol. 1, Birkhä user, Basel (1990).

  11. 11.

    F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments (Lect. Notes Phys., Vol. m66), Springer, Berlin (2001).

  12. 12.

    A. B. Abanov and P. B. Wiegmann, Phys. Rev. Lett., 95, 076402 (2005).

  13. 13.

    A. Bonami, F. Bouchut, E. Cépa, and D. Lépingle, J. Funct. Anal., 165, 390–406 (1999).

  14. 14.

    G. Dattoli, P. L. Ottaviani, A. Torre, and L. Vázquez, Riv. Nuovo Cimento, 20, 1–133 (1997).

  15. 15.

    G. Dattoli, P. E. Ricci, and C. Cesarano, Appl. Anal., 80, 379–384 (2001).

  16. 16.

    H. M. Srivastava, Nederl. Akad. Wetensch. Proc. Ser. A, 38, 457–461 (1976).

  17. 17.

    L. Martina and O. K. Pashaev, “Noncommutative Burgers’ equation,” in: Nonlinear Physics: Theory and Experiment II (Gallipoli, Italy, 2002, M. J. Ablowitz et al., eds.), World Scientific, River Edge, N. J. (2003), pp. 83–88.

Download references

Author information

Additional information


Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 152, No. 1, pp. 163–176, July, 2007.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pashaev, O.K., Gurkan, Z.N. Abelian Chern-Simons vortices and holomorphic Burgers hierarchy. Theor Math Phys 152, 1017–1029 (2007).

Download citation


  • Chern-Simons gauge theory
  • Burgers hierarchy
  • noncommutative vortex
  • Ishimori model
  • holomorphic equation
  • Kampe de Feriet polynomial