Theoretical and Mathematical Physics

, Volume 151, Issue 3, pp 820–830 | Cite as

Integrable semiclassical deformations of general algebraic curves and associated conservation laws

  • B. G. Konopelchenko
  • L. Martínez Alonso
  • E. Medina
Article
  • 46 Downloads

Abstract

Based on the Lenard relations, we completely classify integrable deformations of general algebraic curves. We construct the general solution of the Lenard relation from the invariance condition with respect to an element of the Galois group of the curve. We give some examples and also some associated conservation laws.

Keywords

algebraic curve integrable system Lenard relation conservation law 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method, Nauka, Moscow (1980); English transl.: S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method, Plenum, New York (1984); E. D. Belokolos, A. I. Bobenko, V. Z. Enol’ski, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin (1994); B. Dubrovin and S. Novikov, Russ. Math. Surveys, 44, No. 6, 35 (1989); H. Flaschka, M. G. Forest, and D. W. Mclauglin, Comm. Pure Appl. Math., 33, 739 (1980); B. A. Dubrovin, Comm. Math. Phys., 145, 195 (1992).MATHGoogle Scholar
  2. 2.
    I. M. Krichever, Funct. Anal. Appl., 22, No. 3, 200 (1988); I. M. Krichever, Comm. Pure Appl. Math., 47, 437 (1994).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Y. Kodama and B. G. Konopelchenko, J. Phys. A, 35, L489 (2002).MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    B. G. Konopelchenko and L. Martínez Alonso, J. Phys. A, 37, 7859 (2004).MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Y. Kodama, B. G. Konopelchenko, and L. Martínez Alonso, Theor. Math. Phys., 144, 961 (2005).CrossRefGoogle Scholar
  6. 6.
    Y. Kodama, B. G. Konopelchenko, L. Martínez Alonso, and E. Medina, J. Math. Phys., 46, 113502 (2005).Google Scholar
  7. 7.
    B. G. Konopelchenko, L. Martínez Alonso, and E. Medina, J. Phys. A, 39, 11231 (2006).Google Scholar
  8. 8.
    C. L. Siegel, Topics in Complex Function Theory, Vol. 1, Elliptic Functions and Uniformization Theory, Wiley, New York (1969).Google Scholar
  9. 9.
    R. Y. Walker, Algebraic Curves, Springer, New York (1978); S. S. Abhyankar, Algebraic Geometry for Scientists and Engineers (Math. Surveys Monogr., Vol. 35), Amer. Math. Soc., Providence, R. I. (1990).MATHGoogle Scholar
  10. 10.
    L. Redei, Algebra, Vol. 1, Pergamon, Oxford (1967).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • B. G. Konopelchenko
    • 1
  • L. Martínez Alonso
    • 2
  • E. Medina
    • 3
  1. 1.Dipartimento di FisicaUniversità degli studi di Lecce, INFNLecceItaly
  2. 2.Departamento de Física Teórica IIUniversidad ComplutenseMadridSpain
  3. 3.Departamento de MatemáticasUniversidad de CádizCádizSpain

Personalised recommendations