Theoretical and Mathematical Physics

, Volume 151, Issue 2, pp 700–717 | Cite as

Universally coupled massive gravity

  • J. B. Pitts
  • W. C. Schieve


We derive Einstein’s equations from a linear theory in flat space-time using free-field gauge invariance and universal coupling. The gravitational potential can be either covariant or contravariant and of almost any density weight. We adapt these results to yield universally coupled massive variants of Einstein’s equations, yielding two one-parameter families of distinct theories with spin 2 and spin 0. The Freund-Maheshwari-Schonberg theory is therefore not the unique universally coupled massive generalization of Einstein’s theory, although it is privileged in some respects. The theories we derive are a subset of those found by Ogievetsky and Polubarinov by other means. The question of positive energy, which continues to be discussed, might be addressed numerically in spherical symmetry. We briefly comment on the issue of causality with two observable metrics and the need for gauge freedom and address some criticisms by Padmanabhan of field derivations of Einstein-like equations along the way.


massive gravity bimetric ghost positive mass causality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Schulmann, A. J. Kox, M. Janssen, and J. Illy, eds., The Collected Papers of Albert Einstein, Vol. 8, The Berlin Years: Correspondence, 1914–1918, Princeton Univ. Press, Princeton, N. J. (1998); A. Beck and D. Howard, eds., The Collected Papers of Albert Einstein, Vol. 4, The Swiss Years: Writings, 1912–1914, Princeton Univ. Press, Princeton, N. J. (1996); M. Janssen, Ann. Phys. (8), 14, No. S1, 58 (2005).Google Scholar
  2. 2.
    M. Janssen and J. Renn, “Untying the knot: How Einstein found his way back to field equations discarded in the Zurich notebook,” in: The Genesis of General Relativity: Sources and Interpretations (Boston Stud. Phil. Sci., Vol. 250, J. Renn, ed.), Vol. 2, Einstein’s Zurich Notebook: Commentary and Essays, Springer, New York (2007); Scholar
  3. 3.
    M. Fierz and W. Pauli, Proc. Roy. Soc. London, Ser. A, 173, 211 (1939); N. Rosen, Phys. Rev., 57, 147, 150 (1940); A. Papapetrou, Proc. Roy. Irish Acad. Sect. A, 52, 11 (1948); S. N. Gupta, Phys. Rev., 96, 1683 (1954).zbMATHADSMathSciNetGoogle Scholar
  4. 4.
    R. H. Kraichnan, Phys. Rev., 98, 1118 (1955).zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    M. Kohler, Z. Phys., 134, 286 (1953).zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    R. P. Feynman, F. B. Morinigo, W. G. Wagner, B. Hatfield, J. Preskill, and K. S. Thorne, Feynman Lectures on Gravitation, Addison-Wesley, Reading, Mass. (1995).Google Scholar
  7. 7.
    V. I. Ogievetsky and I. V. Polubarinov, Ann. Phys., 35, 167 (1965).CrossRefADSGoogle Scholar
  8. 8.
    S. Weinberg, Phys. Rev., 138, B988 (1965).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    S. Deser, Gen. Relativity Gravitation, 1, 9 (1970); arXiv:gr-qc/0411023v2 (2004).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    L. P. Grishchuk, A. N. Petrov, and A. D. Popova, Comm. Math. Phys., 94, 379 (1984).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A. A. Logunov and M. A. Mestvirishvili, Theor. Math. Phys., 86, 1 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J. B. Pitts and W. C. Schieve, Gen. Relativity Gravitation, 33, 1319 (2001); arXiv: gr-qc/0101058v2 (2001).zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. 13.
    J. B. Pitts and W. C. Schieve, Found. Phys., 34, 211 (2004); arXiv:gr-qc/0406102v1 (2004).zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    N. Boulanger and M. Esole, Class. Q. Grav., 19, 2107 (2002); arXiv:gr-qc/0110072v2 (2001).zbMATHCrossRefADSMathSciNetGoogle Scholar
  15. 15.
    S. Deser, Class. Q. Grav., 4, L99 (1987).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    N. Boulanger, T. Damour, L. Gualtieri, and M. Henneaux, Nucl. Phys. B, 597, 127 (2001); arXiv:hep-th/0007220v2 (2000).zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    S. V. Babak and L. P. Grishchuk, Phys. Rev. D, 61, 024038 (2000); arXiv:gr-qc/9907027v2 (1999).Google Scholar
  18. 18.
    N. Pinto-Neto, and P. I. Trajtenberg, Braz. J. Phys., 30, No. 1, 181 (2000).CrossRefGoogle Scholar
  19. 19.
    T. Padmanabhan, “From gravitons to gravity: Myths and reality,” arXiv:gr-qc/0409089v1 (2004).Google Scholar
  20. 20.
    M. Visser, Gen. Relativity Gravitation, 30, 1717 (1998); arXiv:gr-qc/9705051v2 (1997).zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    S. V. Babak and L. P. Grishchuk, Internat. J. Mod. Phys. D, 12, 1905 (2003); arXiv: gr-qc/0209006v2 (2002).zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    I. V. Tyutin and E. S. Fradkin, Sov. J. Nucl. Phys., 15, 331 (1972).CrossRefGoogle Scholar
  23. 23.
    P. G. O. Freund, A. Maheshwari, and E. Schonberg, Astrophys. J., 157, 857 (1969).CrossRefADSGoogle Scholar
  24. 24.
    D. G. Boulware and S. Deser, Phys. Rev. D, 6, 3368 (1972).CrossRefADSGoogle Scholar
  25. 25.
    W. Israel, Differential Forms in General Relativity (2nd ed.), Dublin Inst. Adv. Studies, Dublin (1979).zbMATHGoogle Scholar
  26. 26.
    P. van Nieuwenhuizen, Nucl. Phys. B, 60, 478 (1973).CrossRefADSGoogle Scholar
  27. 27.
    P. Havas, “Energy-momentum tensors in special and general relativity,” in: Developments in General Relativity, Astrophysics, and Quantum Theory (F. I. Cooperstock, L. P. Horwitz, and J. Rosen, eds.), IOP, Bristol (1990), p. 131.Google Scholar
  28. 28.
    E. Kretschmann, Ann. Phys. (8), 53, 575 (1917).Google Scholar
  29. 29.
    J. L. Anderson, Principles of Relativity Physics, Acad. Press, New York (1967).Google Scholar
  30. 30.
    M. Friedman, Foundations of Space-Time Theories: Relativistic Physics and Philosophy of Science, Princeton Univ. Press, Princeton, N. J. (1983).Google Scholar
  31. 31.
    J. D. Norton, Erkenntnis, 42, 223 (1995).CrossRefMathSciNetGoogle Scholar
  32. 32.
    C. Misner, K. Thorne, and J. A. Wheeler, Gravitation, Freeman, San Francisco (1973).Google Scholar
  33. 33.
    J. B. Pitts, Stud. Hist. Philos. Sci. B. Stud. Hist. Philos. Modern Phys., 37, 347 (2006); arXiv:gr-qc/0506102v4 (2005).MathSciNetGoogle Scholar
  34. 34.
    D. Giulini, “Some remarks on the notions of general covariance and background independence,” in: Approaches to Fundamental Physics: An Assessment of Current Theoretical Ideas (Lect. Notes Phys., Vol. 721, E. Seiler and I.-O. Stamatescue, eds.), Springer, New York (2007); arXiv:gr-qc/0603087 (2006).Google Scholar
  35. 35.
    P. Bergmann, “Topics in the theory of general relativity,” in: Lectures in Theoretical Physics, Benjamin, New York (1957); R. U. Sexl, Fortschr. Phys., 15, 269 (1967); J. Stachel, “The meaning of general covariance: The hole story,” in: Philosophical Problems of the Internal and External Worlds (J. Earman, A. I. Janis, G. J. Massey, and N. Rescher, eds.), Univ. Pittsburgh Press, Pittsburgh (1993), p. 129.Google Scholar
  36. 36.
    M. J. Gotay and J. E. Marsden, “Stress-energy-momentum tensors and the Belinfante-Rosenfeld formula,” in: Mathematical Aspects of Classical Field Theory (Contemp. Math., Vol. 132, M. J. Gotay, J. E. Marsden, and V. Moncrief, eds.), Amer. Math. Soc., Providence, R. I. (1992), p. 367; Scholar
  37. 37.
    V. I. Ogievetskii and I. V. Polubarinov, Sov. Phys. JETP, 21, 1093 (1965); R. F. Bilyalov, Russ. Math., 46, No. 11, 6 (2002).ADSMathSciNetGoogle Scholar
  38. 38.
    L. Rosenfeld, Acad. Roy. Belgique, Cl. Sci. Mém., 18, No. 6, 1 (1940).MathSciNetGoogle Scholar
  39. 39.
    N. Rosen, “Flat space and variational principle,” in: Perspectives in Geometry and Relativity (B. Hoffmann, ed.), Indiana Univ. Press, Bloomington (1966), p. 325; Gen. Relativity Gravitation, 4, 435 (1973); R. D. Sorkin, Modern Phys. Lett. A, 17, 695 (2002); Scholar
  40. 40.
    R. M. Wald, General Relativity, Univ. Chicago Press, Chicago (1984).zbMATHGoogle Scholar
  41. 41.
    E. R. Huggins, “Quantum mechanics of the interaction of gravity with electrons: Theory of a spin-two field coupled to energy,” Doctoral dissertation, Calif. Inst. Tech., Pasadena, Calif. (1962).Google Scholar
  42. 42.
    A. N. Petrov and J. Katz, Proc. Roy. Soc. London A, 458, 319 (2002); arXiv:gr-qc/9911025v3 (1999).zbMATHADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    M. G. Hare, Can. J. Phys., 51, 431 (1973); A. S. Goldhaber and M. M. Nieto, Phys. Rev. D, 9, 1119 (1974); L. S. Finn and P. J. Sutton, Phys. Rev. D, 65, 044022 (2002); arXiv:gr-qc/0109049v2 (2001).ADSGoogle Scholar
  44. 44.
    S. Deser, “Bimetric gravity revisited,” in: Developments in General Relativity, Astrophysics, and Quantum Theory (F. I. Cooperstock, L. P. Horwitz, and J. Rosen, eds.), IOP, Bristol (1990), p. 77.Google Scholar
  45. 45.
    V. I. Zakharov, JETP Letters, 12, 312 (1970); H. van Dam and M. Veltman, Nucl. Phys. B, 22, 397 (1970); Gen. Relativity Gravitation, 3, 215 (1972); M. Carrera and D. Giulini, “Classical analysis of the van Dam-Veltman discontinuity,” arXiv:gr-qc/0107058v2 (2001).ADSGoogle Scholar
  46. 46.
    Yu. M. Loskutov, Theor. Math. Phys., 107, 686 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    K. Sundermeyer, Constrained Dynamics: With Applications to Yang-Mills Theory, General Relativity, Classical Spin, Dual String Model (Lect. Notes Phys., Vol. 169), Springer, Berlin (1982).zbMATHGoogle Scholar
  48. 48.
    J. B. Pitts, J. Phys. Conf. Ser., 33, 279 (2006); arXiv:hep-th/0601185v2 (2006).CrossRefGoogle Scholar
  49. 49.
    A. Anderson and J. W. York Jr., Phys. Rev. Lett., 81, 1154 (1998); arXiv:gr-qc/9807041v1 (1998).zbMATHCrossRefADSMathSciNetGoogle Scholar
  50. 50.
    S. S. Gershtein, A. A. Logunov, and M. A. Mestvirishvili, “On one fundamental property of gravitational field in the field theory,” arXiv:gr-qc/0412122v5 (2004).Google Scholar
  51. 51.
    G. Velo and D. Zwanziger, Phys. Rev., 186, 1337 (1969).CrossRefADSGoogle Scholar
  52. 52.
    I. Schmelzer, “General ether theorie and graviton mass,” arXiv:gr-qc/9811073v1 (1998).Google Scholar
  53. 53.
    Yu. V. Chugreev, Theor. Math. Phys., 138, 293 (2004).CrossRefMathSciNetGoogle Scholar
  54. 54.
    N. Arkani-Hamed, H. Georgi, and M. D. Schwartz, Ann. Phys., 305, 96 (2003); arXiv:hep-th/0210184v2 (2002).zbMATHADSMathSciNetGoogle Scholar
  55. 55.
    R. Delbourgo and A. Salam, Lett. Nuovo Cimento, 12, 297 (1975); S. Hamamoto, Progr. Theoret. Phys., 95, 441 (1996); 97, 141 (1997); M. J. Du., J. T. Liu, and H. Sati, Phys. Lett. B, 516, 156 (2001); arXiv:hep-th/0105008v1 (2001); F. A. Dilkes, M. J. Du., J. T. Liu, and H. Sati, Phys. Rev. Lett., 87, 041301 (2001); arXiv:hep-th/0102093v3 (2001).Google Scholar
  56. 56.
    I. A. Batalin, and I. V. Tyutin, Internat. J. Mod. Phys. A, 6, 3255 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  57. 57.
    A. S. Vytheeswaran, Internat. J. Mod. Phys. A, 13, 765 (1998); arXiv:hep-th/9701050v2 (1997).zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • J. B. Pitts
    • 1
    • 2
    • 3
  • W. C. Schieve
    • 1
  1. 1.Department of PhysicsUniversity of Texas at AustinAustinUSA
  2. 2.Department of MathematicsSt. Edward’s UniversityAustin
  3. 3.History and Philosophy of Science Graduate ProgramUniversity of Notre DameNotre DameUSA

Personalised recommendations