Theoretical and Mathematical Physics

, Volume 151, Issue 1, pp 539–555 | Cite as

Fine-grained and coarse-grained entropy in problems of statistical mechanics

  • V. V. Kozlov
  • D. V. Treshchev
Article

Abstract

We consider dynamical systems with a phase space Γ that preserve a measure μ. A partition of Γ into parts of finite μ-measure generates the coarse-grained entropy, a functional that is defined on the space of probability measures on Γ and generalizes the usual (ordinary or fine-grained) Gibbs entropy. We study the approximation properties of the coarse-grained entropy under refinement of the partition and also the properties of the coarse-grained entropy as a function of time.

Keywords

invariant measure Gibbs entropy coarse-grained entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Bowen, Methods in Symbolic Dynamics [Russian transl. of selected works], Mir, Moscow (1979).Google Scholar
  2. 2.
    M. Kac, Probability and Related Topics in Physical Sciences (Lect. Appl. Math., Vol. 1), Interscience, London (1959).MATHGoogle Scholar
  3. 3.
    N. S. Krylov, Works on the Foundations of Statistical Physics [in Russian], Izdat. Akad. Nauk SSSR, Moscow (1950); English transl., Princeton Univ. Press, Princeton, N. J. (1979).Google Scholar
  4. 4.
    H. Poincaré, Journal de Physique Théorique et Appliquée, 4 Série, 5, 369–403 (1906).Google Scholar
  5. 5.
    J. W. Gibbs, Thermodynamics: Statistical Mechanics [Russian transl. of selected works], Nauka, Moscow (1982).Google Scholar
  6. 6.
    V. V. Kozlov and D. V. Treshchev, Theor. Math. Phys., 136, 1325–1335 (2003).CrossRefMathSciNetGoogle Scholar
  7. 7.
    V. V. Kozlov and D. V. Treshchev, Theor. Math. Phys., 134, 339–350 (2003).CrossRefMathSciNetGoogle Scholar
  8. 8.
    S. V. Goncharenko, D. V. Turaev, and L. P. Shil’nikov, Dokl. Rossiiskoi Akad. Nauk, 407, 299–303 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. V. Kozlov
    • 1
  • D. V. Treshchev
    • 2
  1. 1.Steklov Mathematical InstituteRASMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations