Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The possibility of reconciling quantum mechanics with classical probability theory

Abstract

We describe a scheme for constructing quantum mechanics in which a quantum system is considered as a collection of open classical subsystems. This allows using the formal classical logic and classical probability theory in quantum mechanics. Our approach nevertheless allows completely reproducing the standard mathematical formalism of quantum mechanics and identifying its applicability limits. We especially attend to the quantum state reduction problem.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Verlag von Julius Springer, Berlin (1932).

  2. 2.

    D. A. Slavnov, Theor. Math. Phys., 142, 431 (2005).

  3. 3.

    J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris (1969).

  4. 4.

    W. Rudin, Functional Analysis, McGraw-Hill, New York (1973).

  5. 5.

    S. Kochen and E. P. Specker, J. Math. Mech., 17, 59 (1967); D. M. Greenberg, M. A. Horne, A. Shimony, and A. Zeilinberg, Amer. J. Phys., 58, 1131 (1990).

  6. 6.

    A. N. Kolmogorov, Basic Notions of Probability Theory [in Russian] (2nd ed.), Nauka, Moscow (1974); English transl. prev. ed.: Foundations of the Theory of Probability, Chelsea, New York (1956).

  7. 7.

    D. A. Slavnov, Theor. Math. Phys., 136, 1273 (2003).

  8. 8.

    J. Neveu, Bases mathématiques du calcul des probabilités, Masson, Paris (1964).

  9. 9.

    J. F. Clauser, M. A. Horn, A. Shimony, and R. A. Holt, Phys. Rev. Lett., 23, 880 (1969).

  10. 10.

    J. S. Bell, Physics, 1, 195 (1965).

  11. 11.

    P. Jordan, Z. Phys., 80, 285 (1933).

  12. 12.

    G. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley, New York (1972).

  13. 13.

    M. A. Neimark, Normed Rings [in Russian], Nauka, Moscow (1968); English transl., Wolters-Noordhoff, Groningen (1970).

  14. 14.

    M. Born, Z. Phys., 37, 863 (1926); 38, 803; 40, 167 (1927).

Download references

Author information

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 149, No. 3, pp. 457–472, December, 2006.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Slavnov, D.A. The possibility of reconciling quantum mechanics with classical probability theory. Theor Math Phys 149, 1690–1701 (2006). https://doi.org/10.1007/s11232-006-0151-0

Download citation

Keywords

  • quantum measurement
  • algebra of observables
  • probability theory
  • quantum state reduction