Advertisement

Theoretical and Mathematical Physics

, Volume 149, Issue 3, pp 1604–1616 | Cite as

Nonlinear equations for p-adic open, closed, and open-closed strings

  • V. S. Vladimirov
Article

Abstract

We investigate the structure of solutions of boundary value problems for a one-dimensional nonlinear system of pseudodifferential equations describing the dynamics (rolling) of p-adic open, closed, and open-closed strings for a scalar tachyon field using the method of successive approximations. For an open-closed string, we prove that the method converges for odd values of p of the form p = 4n+1 under the condition that the solution for the closed string is known. For p = 2, we discuss the questions of the existence and the nonexistence of solutions of boundary value problems and indicate the possibility of discontinuous solutions appearing.

Keywords

string tachyon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Brekke and P. G. O. Freund, Phys. Rep., 233, 1 (1993).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    N. Moeller and M. Schnabl, JHEP, 0401, 011 (2004).Google Scholar
  3. 3.
    I. M. Gelfand and G. E. Shilov, Generalized Functions and Operations on Them [in Russian], Vol. 2, Spaces of Fundamental and Generalized Functions, Fizmatlit., Moscow (1958); English transl.: Generalized Functions, Vol. 2, Spaces of Fundamental and Generalized Functions, Acad. Press, New York (1968).Google Scholar
  4. 4.
    V. S. Vladimirov and Ya. I. Volovich, Theor. Math. Phys., 138, 297 (2004); math-ph/0306018 (2003).CrossRefMathSciNetGoogle Scholar
  5. 5.
    M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, Vols. 1, 2, Cambridge Univ. Press, Cambridge (1987, 1988).MATHGoogle Scholar
  6. 6.
    L. Brekke, P. G. O. Freund, M. Olson, and E. Witten, Nucl. Phys. B, 302, 365 (1988); V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics [in Russian], Nauka, Moscow (1994); English transl., World Scientific, Singapore (1994); A. Sen, JHEP, 0204, 048 (2002); hep-th/0203211 (2002); D. Ghoshal and A. Sen, Nucl. Phys. B, 584, 300 (2000); I. V. Volovich, Class. Q. Grav., 4, L83 (1987); J. A. Minahan, JHEP, 0103, 028 (2001); N. Barnaby, JHEP, 0407, 025 (2004); hep-th/0406120 (2004); E. Coletti, I. Sigalov, and W. Taylor, JHEP, 0508, 104 (2005); hep-th/0505031 (2005).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    P. H. Frampton and Y. Okada, Phys. Rev. D, 37, 3077 (1988).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    N. Moeller and B. Zwiebach, JHEP, 0210, 034 (2002); hep-th/0207107 (2002).Google Scholar
  9. 9.
    I. Ya. Aref’eva, L. V. Joukovskaja, and A. S. Koshelev, JHEP, 0309, 012 (2003); hep-th/0301137 (2003).Google Scholar
  10. 10.
    Ya. I. Volovich, J. Phys. A, 36, 8685 (2003); math-ph/0301028 (2003).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    V. S. Vladimirov, Izv. Math., 69, 487 (2005); math-ph/0507018 (2005).CrossRefMathSciNetGoogle Scholar
  12. 12.
    L. V. Joukovskaja, Theor. Math. Phys., 146, 335 (2006).CrossRefGoogle Scholar
  13. 13.
    G. Calcagni, JHEP, 0605, 012 (2006); hep-th/0512259 (2005).Google Scholar
  14. 14.
    V. S. Vladimirov, Russ. Math. Surveys, 60, 1077 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. S. Vladimirov
    • 1
  1. 1.Steklov Mathematical InstituteRASMoscowRussia

Personalised recommendations