Pairs of commuting Hamiltonians quadratic in the momenta
Article
- 51 Downloads
- 9 Citations
Abstract
In the case of two degrees of freedom, we consider pairs of Hamiltonians quadratic in the momenta and commuting with respect to the standard Poisson bracket. We find new multiparameter families of such pairs and present a universal scheme for constructing a complete solution of the Hamilton-Jacobi equation in terms of integrals over an algebraic curve. For the most complicated examples, this curve is a nonhyperelliptic covering of an elliptic curve.
Keywords
integrable Hamiltonian system separation of variables algebraic systemPreview
Unable to display preview. Download preview PDF.
References
- 1.B. Dorizzi, B. Grammaticos, A. Ramani, and P. Winternitz, J. Math. Phys., 26, 3070–3079 (1985); E. V. Ferapontov and A. P. Fordy, Phys. D, 108, 350–364 (1997); Rep. Math. Phys., 44, No. 1/2, 71–80 (1999); E. McSween and P. Winternitz, J. Math. Phys., 41, 2957–2967 (2000).MathSciNetCrossRefADSGoogle Scholar
- 2.H. M. Yehia, J. Phys. A, 25, 197–221 (1992).zbMATHMathSciNetCrossRefADSGoogle Scholar
- 3.V. G. Marikhin and V. V. Sokolov, Regul. Chaotic Dyn., 10, 59–70 (2005).zbMATHMathSciNetCrossRefGoogle Scholar
- 4.V. G. Marikhin and V. V. Sokolov, Russ. Math. Surveys, 60, 981–983 (2005).MathSciNetCrossRefGoogle Scholar
- 5.F. Schottky, Sitzungsber. König. Preuss. Akad. Wiss. zu Berlin, 13, 227–232 (1891); S. V. Manakov, Funct. Anal. Appl., 10, 328–329 (1976); A. Clebsch, Math. Ann., 3, 238–262 (1870).Google Scholar
- 6.V. V. Prasolov and Yu. P. Solov’ev, Elliptic Functions and Algebraic Equations [in Russian], Factorial, Moscow (1997).Google Scholar
- 7.V. A. Stekloff, Toulouse Ann., Ser. 3, 1, 145–256 (1910).zbMATHMathSciNetGoogle Scholar
Copyright information
© Springer Science+Business Media, Inc. 2006