Advertisement

Theoretical and Mathematical Physics

, Volume 149, Issue 1, pp 1324–1337 | Cite as

Dressing chain for the acoustic spectral problem

  • V. E. Adler
  • A. B. Shabat
Article

Abstract

We study iterations of the Darboux transformation for the generalized Schrödinger operator and consider applications to the Dym and Camassa-Holm equations.

Keywords

Darboux transformation dressing chain Dym equation Camassa-Holm equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Kruskal, “Nonlinear wave equations,” in: Dynamical Systems, Theory and Applications (Lect. Notes Phys., Vol. 38, J. Moser, ed.), Springer, Heidelberg (1975), pp. 310–354.Google Scholar
  2. 2.
    B. Fuchssteiner and A. S. Fokas, Phys. D, 4, 47–66 (1981); R. Camassa and D. D. Holm, Phys. Rev. Lett., 71, 1661–1664 (1993).MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    M. G. Krein, Dokl. Akad. Nauk SSSR, 82, 669–672 (1952).zbMATHMathSciNetGoogle Scholar
  4. 4.
    F. Calogero and A. Degasperis, Spectral Transforms and Solitons, North-Holland, Amsterdam (1982).Google Scholar
  5. 5.
    R. Beals, D. Sattinger, and J. Szmigielski, Adv. Math., 140, 190–206 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Constantin, Proc. Roy. Soc. London A, 457, 953–970 (2001).zbMATHMathSciNetADSCrossRefGoogle Scholar
  7. 7.
    L. A. Dmitrieva, Phys. Lett. A, 182, 65–70 (1993); J. Phys. A, 26, 6005–6020 (1993); A. Constantin and H. P. McKean, Comm. Pure Appl. Math., 52, 949–982 (1999); V. S. Novikov, JETP Letters, 72, 153–157 (2000); M. S. Alber and Yu. N. Fedorov, Inverse Problems, 17, 1017–1042 (2001); M. S. Alber, R. Camassa, Yu. N. Fedorov, D. D. Holm, and J. E. Marsden, Comm. Math. Phys., 221, 197–227 (2001); R. Camassa and A. I. Zenchuk, Phys. Lett. A, 281, 26–33 (2001).MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    J. Schiff, Phys. D, 121, 24–43 (1998); A. N. W. Hone, J. Phys. A, 32, L307–L314 (1999); R. I. Ivanov, Phys. Lett. A, 345, 112–118 (2005); nlin.SI/0507005 (2005).zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    M. M. Crum, Quart. J. Math. Oxford 2, 6, 121–127 (1995).MathSciNetGoogle Scholar
  10. 10.
    G. L. Lamb Jr., Elements of Soliton Theory, Wiley, New York (1980).zbMATHGoogle Scholar
  11. 11.
    A. B. Shabat, Inverse Problems, 8, 303–308 (1992); A. P. Veselov and A. B. Shabat, Funct. Anal. Appl., 27, 81–96 (1993).zbMATHMathSciNetCrossRefADSGoogle Scholar
  12. 12.
    A. B. Shabat and R. I. Yamilov, Leningr. Math. J., 2, 377–400 (1990).MathSciNetGoogle Scholar
  13. 13.
    R. H. Heredero, J. Nonlinear Math. Phys., 12, 567–585 (2005).zbMATHMathSciNetADSGoogle Scholar
  14. 14.
    R. I. Yamilov, Theor. Math. Phys., 85, 1269–1275 (1990).zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    R. Beals, M. Rabelo, and K. Tenenblat, Stud. Appl. Math., 81, 125–151 (1989); T. Schäfer and C. E. Wayne, Phys. D, 196, 90–105 (2004).zbMATHMathSciNetGoogle Scholar
  16. 16.
    G. Falqui, “On a Camassa-Holm type equation with two dependent variables,” nlin.SI/0505059 (2005); H. Aratyn, J. F. Gomes, and A. H. Zimerman, J. Phys. A, 39, 1099–1114 (2006).Google Scholar
  17. 17.
    A. Degasperis and M. Procesi, “Asymptotic integrability,” in: Symmetry and Perturbation Theory (Proc. 2nd Intl. Workshop, Rome, Italy, December 16–22, 1998, A. Degasperis and G. Gaeta, eds.), World Scientific, Singapore (1999), pp. 23–37; A. Degasperis, D. D. Holm, and A. N. W. Hone, Theor. Math. Phys., 133, 170–183 (2002).Google Scholar
  18. 18.
    V. E. Adler, V. G. Marikhin, and A. B. Shabat, Theor. Math. Phys., 129, 1448–1465 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    V. G. Dubrovsky and B. G. Konopelchenko, J. Phys. A, 27, 4619–4628 (1994); L. A. Dmitrieva and M. A. Khlabystova, Phys. Lett. A, 237, 369–380 (1998).zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. E. Adler
    • 1
  • A. B. Shabat
    • 1
  1. 1.Landau Institute for Theoretical PhysicsRASChernogolovkaRussia

Personalised recommendations