Theoretical and Mathematical Physics

, Volume 148, Issue 3, pp 1210–1235 | Cite as

Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT

  • A. M. Gainutdinov
  • A. M. Semikhatov
  • I. Yu. Tipunin
  • B. L. Feigin


To study the representation category of the triplet W-algebra \(\mathcal{W}\left( p \right)\) that is the symmetry of the (1, p) logarithmic conformal field theory model, we propose the equivalent category C p of finite-dimensional representations of the restricted quantum group Ū q sℓ(2) at \(\mathfrak{q} = e^{{{i\pi } \mathord{\left/ {\vphantom {{i\pi } p}} \right. \kern-\nulldelimiterspace} p}} \). We fully describe the category C p by classifying all indecomposable representations. These are exhausted by projective modules and three series of representations that are essentially described by indecomposable representations of the Kronecker quiver. The equivalence of the \(\mathcal{W}\left( p \right)\)-and Ū q sℓ(2)-representation categories is conjectured for all p = 2 and proved for p = 2. The implications include identifying the quantum group center with the logarithmic conformal field theory center and the universal R-matrix with the braiding matrix.


Kazhdan-Lusztig correspondence quantum groups logarithmic conformal field theories indecomposable representations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Kazhdan and G. Lusztig, J. Am. Math. Soc., 6, 905, 949 (1993); 7, 335, 383 (1994).CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    M. Finkelberg, Geom. Funct. Anal., 6, 249 (1996); V. G. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter, Berlin (1994).CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    G. Moore and N. Seiberg, “Lectures on RCFT,” in: Superstrings’89 (Proc. Spring School held in Trieste, Italy, April 3–14, 1989, M. Green, R. Iengo, S. Randjbar-Daemi, E. Sezgin, and A. Strominger, eds.), World Scientific, Singapore (1990), p. 263.Google Scholar
  4. 4.
    J. Fuchs, I. Runkel, and C. Schweigert, Nucl. Phys. B, 646, 353 (2002); hep-th/0204148 (2002).CrossRefADSMathSciNetMATHGoogle Scholar
  5. 5.
    E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves (Math. Surv. Monographs, Vol. 88), Amer. Math. Soc., Providence, R. I. (2001); B. Bakalov and A. A. Kirillov, Lectures on Tensor Categories and Modular Functors, Amer. Math. Soc., Providence, R. I. (2001); J. Fuchs, I. Runkel, and C. Schweigert, Nucl. Phys. B, 678, 511 (2004); hep-th/0306164 (2003).MATHGoogle Scholar
  6. 6.
    J. Fuchs, I. Runkel, and C. Schweigert, “Ribbon categories and (unoriented) CFT: Frobenius algebras, automorphisms, reversions,” math.CT/0511590 (2005).Google Scholar
  7. 7.
    M. Miyamoto, “A theory of tensor products for vertex operator algebra satisfying C 2-cofiniteness,” math.QA/0309350 (2003).Google Scholar
  8. 8.
    Y.-Z. Huang, J. Lepowsky, and L. Zhang, “A logarithmic generalization of tensor product theory for modules for a vertex operator algebra,” math.QA/0311235 (2003).Google Scholar
  9. 9.
    J. Fuchs, “On non-semisimple fusion rules and tensor categories,” hep-th/0602051 (2006).Google Scholar
  10. 10.
    H. G. Kausch, Phys. Lett. B, 259, 448 (1991).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Yu. Tipunin, Comm. Math. Phys., 265, 47 (2006); hep-th/0504093 (2005).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    J. Fuchs, S. Hwang, A. M. Semikhatov, and I. Yu. Tipunin, Comm. Math. Phys., 247, 713 (2004); hepth/0306274 (2003).CrossRefADSMathSciNetMATHGoogle Scholar
  13. 13.
    M. Auslander, I. Reiten, and S. O. Smalø, Representation Theory of Artin Algebras (Cambridge Studies Adv. Math., Vol. 36), Cambridge Univ. Press, Cambridge (1995).MATHGoogle Scholar
  14. 14.
    M. A. I. Flohr, Internat. J. Mod. Phys. A, 11, 4147 (1996); hep-th/9509166 (1995).CrossRefADSMathSciNetMATHGoogle Scholar
  15. 15.
    T. Kerler and V. V. Lyubashenko, Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners (Lect. Notes Math., Vol. 1765), Springer, Berlin (2001).MATHGoogle Scholar
  16. 16.
    M. Flohr and M. R. Gaberdiel, J. Phys. A, 39, 1955 (2006); hep-th/0509075 (2005).CrossRefADSMathSciNetMATHGoogle Scholar
  17. 17.
    V. Lyubashenko, Comm. Math. Phys., 172, 467 (1995); hep-th/9405167 (1994); “Modular properties of ribbon abelian categories,” in: Proc. 2nd Gauss Symposium, Conference A: Mathematical and Theoretical Physics (Munich, Germany, August 2–7, 1993, M. Behara, R. Fritsch, and R. G. Lintz, eds.), de Gruyter, Berlin (1995), p. 529; hep-th/9405168 (1994); J. Pure Appl. Algebra, 98, 279 (1995); V. Lyubashenko and S. Majid, J. Algebra, 166, 506 (1994).CrossRefADSMathSciNetMATHGoogle Scholar
  18. 18.
    M. R. Gaberdiel and H. G. Kausch, Nucl. Phys. B, 477, 293 (1996); hep-th/9604026 (1996).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    S. MacLane, Homology, Springer, Berlin (1963).MATHGoogle Scholar
  20. 20.
    W. Crawley-Boevey, “Lectures on representations of quivers,” Lectures at Oxford in 1992, available at∼pmtwc/.
  21. 21.
    H. G. Kausch, Nucl. Phys. B, 583, 513 (2000); hep-th/0003029 (2000).CrossRefADSMathSciNetMATHGoogle Scholar
  22. 22.
    M. R. Gaberdiel and H. G. Kausch, Phys. Lett. B, 386, 131 (1996); hep-th/9606050 (1996).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    H. G. Kausch, “Curiosities at c = −2,” hep-th/9510149 (1995).Google Scholar
  24. 24.
    S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg, J. Am. Math. Soc., 17, 595 (2004); math.RT/0304173 (2003).CrossRefMathSciNetMATHGoogle Scholar
  25. 25.
    Y.-Z. Huang and L. Kong, “Full field algebras,” math.QA/0511328 (2005).Google Scholar
  26. 26.
    P. Gabriel, Manuscripta Math., 6, 71 (1972); correction, 6, 309 (1972); J. Bernstein, I. Gel’fand, and V. Ponomarev, Russ. Math. Surveys, 28, No. 2, 17 (1973).CrossRefMathSciNetGoogle Scholar
  27. 27.
    L. A. Nazarova, Math. USSR Izv., 7, 749 (1974); P. Donovan and M. R. Freislich, The Representation Theory of Finite Graphs and Associated Algebras (Carleton Math. Lect. Notes, No. 5), Carleton Univ. Press, Ottawa, Ont., Canada (1973).CrossRefMATHGoogle Scholar
  28. 28.
    V. Dlab and C. M. Ringel, Mem. Am. Math. Soc., 173, 1 (1976).MathSciNetGoogle Scholar
  29. 29.
    I. Frenkel, A. Malkin, and M. Vybornov, “Affine Lie algebras and tame quivers,” math.RT/0005119 (2000).Google Scholar
  30. 30.
    L. Kronecker, Sitzungsber. Akad. Berlin, 1890, 1225 (1890).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. M. Gainutdinov
    • 1
  • A. M. Semikhatov
    • 2
  • I. Yu. Tipunin
    • 2
  • B. L. Feigin
    • 3
  1. 1.Physics DepartmentMoscow State UniversityMoscowRussia
  2. 2.Lebedev Physical InstituteMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsMoscowRussia

Personalised recommendations