Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quantum fields on the light front, formulation in coordinates close to the light front, lattice approximation

Abstract

We review the fundamental ideas of quantizing a theory on a light front including the Hamiltonian approach to the problem of bound states on the light front and the limiting transition from formulating a theory in Lorentzian coordinates (where the quantization occurs on space-like hyperplanes) to the theory on the light front, which demonstrates the equivalence of these variants of the theory. We describe attempts to find such a form of the limiting transition for gauge theories on the Wilson lattice.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. A. M. Dirac, Rev. Modern Phys., 21, 392 (1949).

  2. 2.

    P. M. Stevenson, Phys. Rev. D, 32, 1389 (1985).

  3. 3.

    S. A. Paston and V. A. Franke, Theor. Math. Phys., 112, 1117 (1997); hep-th/9901110 (1999).

  4. 4.

    S. A. Paston, E. V. Prokhvatilov, and V. A. Franke, Theor. Math. Phys., 120, 1164 (1999); hep-th/0002062 (2000); 131, 516 (2002); hep-th/0302016 (2003).

  5. 5.

    E. V. Prokhvatilov, H. W. L. Naus, and H.-J. Pirner, Phys. Rev. D, 51, 2933 (1995); hep-ph/9406275 (1994).

  6. 6.

    E. V. Prokhvatilov and V. A. Franke, Phys. Atomic Nucl., 59, 1030 (1996).

  7. 7.

    S. Dalley and G. McCartor, Annals Phys., 321, 402 (2006); hep-ph/0406287 (2004).

  8. 8.

    V. A. Franke, Yu. V. Novozhilov, and E. V. Prokhvatilov, Lett. Math. Phys., 5, 239, 437 (1981).

  9. 9.

    A. M. Annenkova, E. V. Prokhvatilov, and V. A. Franke, Vestn. Leningr. Gos. Univ., No. 4, 80 (1985); S. A. Paston, E. V. Prokhvatilov, and V. A. Franke, Phys. Atomic Nucl., 68, 267 (2005); hep-th/0501186 (2005); S. J. Brodsky, H.-C. Pauli, and S. S. Pinsky, Phys. Rep., 301, 299 (1997); hep-ph/9705477 (1997).

  10. 10.

    A. M. Annenkova, E. V. Prokhvatilov, and V. A. Franke, Phys. Atomic Nucl., 56, 813 (1993).

  11. 11.

    K. G. Wilson, T. Walhout, A. Harindranath, W. M. Zhang, R. J. Perry, and S. Glazek, Phys. Rev. D, 49, 6720 (1994); hep-th/9401153 (1994); S. J. Brodsky, V. A. Franke, J. R. Hiller, G. McCartor, S. A. Paston, and E. V. Prokhvatilov, Nucl. Phys. B, 703, 333 (2004); hep-ph/0406325 (2004).

  12. 12.

    K. Wilson, Phys. Rev. D, 10, 2445 (1974).

  13. 13.

    M. Creutz, Phys. Rev. D, 15, 1128 (1977).

  14. 14.

    A. A. Slavnov and L. D. Faddeev, Introduction to Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1988); English transl.: L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory, Benjamin, London (1990).

  15. 15.

    P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer Grad. Sch. of Sci., Yeshiva Univ., New York (1964).

  16. 16.

    E. V. Prokhvatilov and V. A. Franke, Sov. J. Nucl. Phys., 47, 559 (1988); 49, 688 (1989); A. B. Bylev, E. V. Prokhvatilov, and V. A. Franke, Vestn. Leningr. Gos. Univ., Ser. 4. Iss. 2, No. 11, 66 (1989).

Download references

Author information

Additional information

This paper is based on a lecture delivered at the V. A. Fock International School of Physics.

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 148, No. 1, pp. 89–101, July, 2006.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ilgenfritz, E., Paston, S.A., Pirner, H. et al. Quantum fields on the light front, formulation in coordinates close to the light front, lattice approximation. Theor Math Phys 148, 948–959 (2006). https://doi.org/10.1007/s11232-006-0091-8

Download citation

Keywords

  • gauge fields
  • light front
  • Hamiltonian approach
  • lattice