Advertisement

Theoretical and Mathematical Physics

, Volume 147, Issue 3, pp 839–846 | Cite as

A hierarchy of generalized invariants for linear partial differential operators

  • E. A. Kartashova
Article

Abstract

We study invariants of linear partial differential operators in two variables under gauge transformations. Using the Beals-Kartashova factorization, we construct a hierarchy of generalized invariants for operators of an arbitrary order. We study the properties of these invariants and give some examples. We also show that the classic Laplace invariants correspond to some particular cases of generalized invariants.

Keywords

linear partial differential operator Beals-Kartashova factorization generalized invariant hierarchy of invariants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Shabat, Theor. Math. Phys., 103, 482–485 (1995).zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Bianchi, Lezioni di Geometria Differenziale, Zanichelli, Bologna (1924); A. N. Leznov and M. V. Saveliev, Group Methods for Integration of Nonlinear Dynamical Systems [in Russian], Nauka, Moscow (1985); English transl.: Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems, Birkhäuser, Basel (1992); S. P. Tsarev, “An algorithm for complete enumeration of all factorizations of a linear ordinary differential operator,” in: Proc. Intl. Symp. on Symbolic and Algebraic Computation (ISSAC’96) (Zurich, Switzerland, 24–26 July 1996, Y. N. Lakshman, ed.), ACM Press, New York (1996), pp. 226–231; S. P. Tsarev, “Factorization of linear partial differential operators and Darboux integrability of nonlinear PDEs,” Poster at ISSAC’98, Rostock, Germany, 13–15 August 1998 (1998); cs.SC/9811002 (1998); G. Tzitzeica, Compt. Rend. Acad. Sci., 150, 955–956, 971–974 (1910).Google Scholar
  3. 3.
    D. Grigoriev and F. Schwarz, J. Comput., 73, 179–197 (2004).MathSciNetGoogle Scholar
  4. 4.
    E. Kaltofen, “Factorization of polynomials,” in: Computing (B. Buchberger, G. E. Collins, and R. Loos, eds.), Springer, Wien (1982), pp. 95–113.Google Scholar
  5. 5.
    R. Beals and E. A. Kartashova, Theor. Math. Phys., 145, 1511–1524 (2005).MathSciNetCrossRefGoogle Scholar
  6. 6.
    E. Kartashova, “BK-factorization and Darboux-Laplace transformations,” in: Proc. 2005 Intl. Conf. on Scientific Computing (CSC’05, Las Vegas, Nevada, USA, 20–23 June 2005, H. R. Arabnia and G. A. Gravvanis, eds.), C.S.R.E.A. Press, Athens, Georgia (2005), pp. 144–150.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. A. Kartashova
    • 1
  1. 1.Johannes Kepler Universität LinzLinzAustria

Personalised recommendations