Advertisement

Theoretical and Mathematical Physics

, Volume 147, Issue 2, pp 687–697 | Cite as

Four-loop verification of an algorithm for summing Feynman diagrams in the N=1 supersymmetric electrodynamics

  • A. B. Pimenov
  • K. V. Stepanyantz
Article

Abstract

By calculating some four-loop diagrams in the N=1 supersymmetric electrodynamics regularized by higher derivatives, we verify a method for summing Feynman diagrams based on using Schwinger-Dyson equations and Ward identities. In particular, for the diagrams considered, we prove the correctness of an additional identity for Green’s functions not reduced to the gauge Ward identity.

Keywords

supersymmetry Ward identity higher covariant derivatives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Novikov, M. Shifman, A. Vainstein, and V. Zakharov, Phys. Lett. B, 166, 329 (1985).CrossRefADSGoogle Scholar
  2. 2.
    W. Siegel, Phys. Lett. B, 84, 193 (1979).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    O. V. Tarasov and V. A. Vladimirov, Phys. Lett. B, 96, 94 (1980); I. Jack, D. R. T. Jones, and C. G. North, Nucl. Phys. B, 486, 479 (1997).CrossRefADSGoogle Scholar
  4. 4.
    A. A. Slavnov, Theor. Math. Phys., 23, 305 (1975); T. Bakeyev and A. Slavnov, Modern Phys. Lett. A, 11, 1539 (1996).CrossRefGoogle Scholar
  5. 5.
    A. Soloshenko and K. Stepanyantz, “Two-loop renormalization of N=1 supersymmetric electrodynamics, regularized by higher derivatives,” hep-th/0203118 (2002); A. A. Soloshenko and K. V. Stepanyantz, Theor. Math. Phys., 134, 377 (2003).Google Scholar
  6. 6.
    A. A. Soloshenko and K. V. Stepanyantz, Theor. Math. Phys., 140, 1264 (2004); hep-th/0304083 (2003).CrossRefGoogle Scholar
  7. 7.
    K. V. Stepanyantz, Theor. Math. Phys., 142, 29 (2005).CrossRefGoogle Scholar
  8. 8.
    K. V. Stepanyantz, Theor. Math. Phys., 146, 321 (2006).CrossRefGoogle Scholar
  9. 9.
    P. West, Introduction to Supersymmetry and Supergravity, World Scientific, Singapore (1986).Google Scholar
  10. 10.
    A. A. Slavnov and L. D. Faddeev, Introduction to the Quantum Theory of Gauge Fields [in Russian], Nauka, Moscow (1988); English transl.: L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory, Benjamin, London (1990).Google Scholar
  11. 11.
    E. Andriyash, A. Pimenov, and K. Stepanyantz, Vestn. Mosk. Univ. Ser. Fiz. Astron., 4, 7 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. B. Pimenov
    • 1
  • K. V. Stepanyantz
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations