Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Deformations of Euclidean supersymmetries

  • 37 Accesses

  • 4 Citations

Abstract

We consider quantum supergroups that arise in nonanticommutative deformations of the N=(1/2, 1/2) and N=(1, 1) four-dimensional Euclidean supersymmetric theories. Twist operators in the corresponding superspaces and deformed superfield algebras contain left spinor generators. We show that nonanticommutative *-products of superfields transform covariantly under the deformed supersymmetries. This covariance guarantees the invariance of the deformed superfield actions of models involving *-products of superfields.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. R. Douglas and N. A. Nekrasov, Rev. Modern Phys., 73, 977 (2001); R. J. Szabo, Phys. Rep., 378, 207 (2003); N. Seiberg and E. Witten, JHEP, 9909, 032 (1999).

  2. 2.

    R. Oeckl, Nucl. Phys. B, 581, 559 (2000).

  3. 3.

    M. Chaichian, P. P. Kulish, K. Nishijima, and A. Tureanu, Phys. Lett. B, 604, 98 (2004); M. Chaichian, P. Presnajder, and A. Tureanu, Phys. Rev. Lett., 94, 151602 (2005).

  4. 4.

    J. Wess, “Deformed coordinate spaces; Derivatives,” hep-th/0408080 (2004); P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp, and J. Wess, Class. Q. Grav., 22, 3511 (2005).

  5. 5.

    P. Kosiński and P. Maślanka, “Lorentz-invariant interpretation of noncommutative space-time—global version,” hep-th/0408100 (2004).

  6. 6.

    P. Podleś and S. L. Woronowicz, Comm. Math. Phys, 178, 61 (1996); O. Ogievetsky, W. B. Schmidke, J. Wess, and B. Zumino, Comm. Math. Phys., 150, 495 (1992); J. Lukierski, H. Ruegg, V. N. Tolstoy, and A. Nowicki, J. Phys. A, 27, 2389 (1994).

  7. 7.

    V. G. Drinfeld, Leningrad Math. J., 1, 1419 (1990).

  8. 8.

    S. Ferrara and M. A. Lledó, JHEP, 0005, 008 (2000); D. Klemm, S. Penati, and L. Tamassia, Class. Q. Grav., 20, 2905 (2003).

  9. 9.

    N. Seiberg, JHEP, 0306, 010 (2003).

  10. 10.

    E. Ivanov, O. Lechtenfeld, and B. Zupnik, JHEP, 0402, 012 (2004).

  11. 11.

    S. Ferrara and E. Sokatchev, Phys. Lett. B, 579, 226 (2004).

  12. 12.

    S. Ferrara, E. Ivanov, O. Lechtenfeld, E. Sokatchev, and B. Zupnik, Nucl. Phys. B, 704, 154 (2005).

  13. 13.

    E. Ivanov, O. Lechtenfeld, and B. Zupnik, Nucl. Phys. B, 707, 69 (2005).

  14. 14.

    Y. Kobayashi and S. Sasaki, Internat. J. Mod. Phys. A, 20, 7175 (2005); hep-th/0410164 (2004).

  15. 15.

    P. Kosinski, J. Lukierski, P. Maslanka, and J. Sobczyk, J. Phys. A, 27, 6827 (1994); J. Math. Phys., 37, 3041 (1996).

  16. 16.

    B. M. Zupnik, Phys. Lett. B, 627, 208 (2005); hep-th/0506043 (2005).

  17. 17.

    P. P. Kulish, “Noncommutative geometry and quantum field theory,” in: Noncommutative Geometry and Representation Theory in Mathematical Physics (Contemp. Math., Vol. 391, J. Fuchs, J. Mickelsson, G. Rozenblioum, A. Stolin, and A. Westerberg, eds.), Amer. Math. Soc., Providence, R. I. (2006), p. 213; M. Ihl and C. Sämann, JHEP, 0601, 065 (2006); hep-th/0506057 (2005).

  18. 18.

    E. A. Ivanov and B. M. Zupnik, Theor. Math. Phys., 142, 197 (2005).

Download references

Author information

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 147, No. 2, pp. 270–289, May, 2006.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zupnik, B.M. Deformations of Euclidean supersymmetries. Theor Math Phys 147, 670–686 (2006). https://doi.org/10.1007/s11232-006-0069-6

Download citation

Keywords

  • supersymmetry
  • superspace
  • deformation
  • twist