Theoretical and Mathematical Physics

, Volume 147, Issue 1, pp 524–532 | Cite as

Resonances and tunneling in a quantum wire

  • A. A. Arseniev


We consider a problem in mathematical scattering theory related to the ballistic conductance model. The model under investigation describes the charge propagation in a quantum wire. We assume that the charge carrier has a spin and take the Rashba spin-orbital interaction into account. We study the conductance resonances generated by the weak quantum-wire interaction with the quasistationary state of a parallel-connected quantum dot or with the tunneling through a series-connected quantum dot. Such a quantum dot is usually the control element. We present sufficient conditions for the spatial symmetry of the system to ensure that the quasistationary state of the quantum dot generates a conductance resonance. We assume that the conductance is related to the scattering matrix by the Landauer formula.


resonance quantum wire ballistic conductance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. J. Beenaker and H. von Houten, Solid State Phys., 44, 1 (1991); cond-mat/0412664 (2004).Google Scholar
  2. 2.
    B. Ricco and M. Ya. Azbel, Phys. Rev. B, 29, 1970 (1984).ADSGoogle Scholar
  3. 3.
    A. A. Arsen’ev, Theor. Math. Phys., 136, 1336 (2003).MathSciNetGoogle Scholar
  4. 4.
    A. A. Arseniev, Theor. Math. Phys., 141, 1415 (2004).CrossRefGoogle Scholar
  5. 5.
    Yu. A. Bychkov and É. I. Rashba, JETP Letters, 39, 78 (1984); Y. A. Bychkov and E. I. Rashba, J. Phys. C, 17, 6039 (1984); M. Governale and U. Zülicke, “Rashba spin splitting in quantum wires,” cond-mat/0407036 (2004); T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Phys. Rev. Lett., 88, 126601 (2002).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. A. Arseniev
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations