Advertisement

Theoretical and Mathematical Physics

, Volume 147, Issue 1, pp 460–485 | Cite as

Quantum matrix algebras of the GL(m|n) type: The structure and spectral parameterization of the characteristic subalgebra

  • D. I. Gurevich
  • P. N. Pyatov
  • P. A. Saponov
Article

Abstract

We continue the study of quantum matrix algebras of the GL(m|n) type. We find three alternative forms of the Cayley-Hamilton identity; most importantly, this identity can be represented in a factored form. The factorization allows naturally dividing the spectrum of a quantum supermatrix into subsets of “even” and “odd” eigenvalues. This division leads to a parameterization of the characteristic subalgebra (the subalgebra of spectral invariants) in terms of supersymmetric polynomials in the eigenvalues of the quantum matrix. Our construction is based on two auxiliary results, which are independently interesting. First, we derive the multiplication rule for Schur functions s λ (M) that form a linear basis of the characteristic subalgebra of a Hecke-type quantum matrix algebra; the structure constants in this basis coincide with the Littlewood-Richardson coefficients. Second, we prove a number of bilinear relations in the graded ring Λ of symmetric functions of countably many variables.

Keywords

quantum groups supermatrices Cayley-Hamilton theorem Littlewood-Richardson rule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. I. Gurevich, P. N. Pyatov, and P. A. Saponov, Alg. Anal., 17, 157–179 (2005); math.QA/0412192 (2004).MathSciNetGoogle Scholar
  2. 2.
    V. G. Drinfel’d, “Quantum groups,” in: Proc. Intl. Congress of Mathematicians (ICM, Berkeley, California, August 3–11, 1986, A. M. Gleason, ed.), Vol. 1, Amer. Math. Soc., Providence, R. I. (1987), pp. 798–820.Google Scholar
  3. 3.
    N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev, Leningrad Math. J., 1, 193–225 (1990).MathSciNetGoogle Scholar
  4. 4.
    P. P. Kulish and R. Sasaki, Progr. Theoret. Phys., 89, 741–761 (1993); P. P. Kulish and E. K. Sklyanin, J. Phys. A, 25, 5963–5975 (1992).ADSMathSciNetGoogle Scholar
  5. 5.
    L. Hlavaty, J. Math. Phys., 35, 2560–2569 (1994).ADSzbMATHMathSciNetGoogle Scholar
  6. 6.
    H. Ewen, O. Ogievetsky, and J. Wess, Lett. Math. Phys., 22, 297–305 (1991); A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, and P. A. Saponov, “Characteristic polynomials for quantum matrices,” in: Proc. Intl. Conf. in Memory of V. I. Ogievetsky “Supersymmetries and Quantum symmetries” (Lect. Notes Phys., Vol. 524, J. Wess and E. Ivanov, eds.), Springer, Berlin (1998), pp. 322–330; J. J. Zhang, J. Pure Appl. Algebra, 129, 101–109 (1998).CrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Nazarov and V. Tarasov, Publ. Res. Inst. Math. Sci., 30, 459–478 (1994); P. Pyatov and P. Saponov, J. Phys. A, 28, 4415–4421 (1995).MathSciNetGoogle Scholar
  8. 8.
    D. Gurevich, P. Pyatov, and P. Saponov, Lett. Math. Phys., 41, 255–264 (1997).CrossRefMathSciNetGoogle Scholar
  9. 9.
    A. P. Isaev, O. V. Ogievetsky, and P. N. Pyatov, J. Phys. A, 32, L115–L121 (1999).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    A. Isaev, O. Ogievetsky, and P. Pyatov, Czech. J. Phys., 48, 1369–1374 (1998).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A. P. Isaev, O. V. Ogievetsky, and P. N. Pyatov, “Cayley-Hamilton-Newton identities and quasitriangular Hopf algebras,” in: Proc. Intl. Workshop “Supersymmetries and Quantum Symmetries” (Dubna, Russia, July 27–31, 1999, E. Ivanov, S. Krivonos, and A. Pashnev, eds.), Joint Inst. Nucl. Res., Dubna, pp. 397–405; math.QA/9912197 (1999).Google Scholar
  12. 12.
    O. V. Ogievetsky and P. N. Pyatov, “Orthogonal and symplectic quantum matrix algebras and Cayley-Hamilton theorem for them,” Preprint MPIM 2005-53 (http://www.mpim-bonn.mpg.de/html/preprints/preprints.html), Max-Planck-Institut, Bonn (2005).Google Scholar
  13. 13.
    I. Kantor and I. Trishin, Comm. Alg., 22, 3679–3739 (1994).MathSciNetGoogle Scholar
  14. 14.
    I. Kantor and I. Trishin, Comm. Alg., 27, 233–259 (1999).MathSciNetGoogle Scholar
  15. 15.
    P. D. Jarvis and H. S. Green, J. Math. Phys., 20, 2115–2122 (1979).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    M. D. Gould and J. R. Links, J. Math. Phys., 37, 2426–2456 (1996).ADSMathSciNetGoogle Scholar
  17. 17.
    I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford (1998).Google Scholar
  18. 18.
    O. Lipan, P. B. Wiegmann, and A. Zabrodin, Modern Phys. Lett. A, 12, 1369–1378 (1997).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    M. Kleber, J. Algebraic Combin., 13, 199–211 (2001); math.QA/9907177 (1999).CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    A. Berele and A. Regev, Adv. Math., 64, No. 2, 118–175 (1987).CrossRefMathSciNetGoogle Scholar
  21. 21.
    P. Pragacz and A. Thorup, Adv. Math., 95, No. 1, 8–17 (1992).CrossRefMathSciNetGoogle Scholar
  22. 22.
    G. B. Gurevich, Foundations of the Theory of Algebraic Invariants [in Russian], Gostekhizdat, Moscow (1948); English transl., Noordhoff, Groningen (1964).Google Scholar
  23. 23.
    I. M. Trishin, Comm. Alg., 27, 261–287 (1999).zbMATHMathSciNetGoogle Scholar
  24. 24.
    J. R. Stembridge, J. Algebra, 95, 439–444 (1985).zbMATHMathSciNetGoogle Scholar
  25. 25.
    F. A. Berezin, Funct. Anal. Appl., 10, 221–223 (1976); Introduction to Superanalysis (Math. Phys. Appl. Math., Vol. 9), Reidel, Dordrecht (1987).zbMATHMathSciNetGoogle Scholar
  26. 26.
    A. N. Sergeev, Represent. Theory, 3, 250–280 (1999).zbMATHMathSciNetGoogle Scholar
  27. 27.
    A. Ram, Proc. London Math. Soc., 75, 99–133 (1997); math.RT/9511223 (1995).CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    O. Ogievetsky and P. Pyatov, “Lecture on Hecke algebras,” in: Proc. Intl. School “Symmetries and Integrable Systems” (Dubna, Russia, June 8–11, 1999), Joint Inst. Nucl. Res., Dubna, pp. 39–88; Preprint MPIM 2001-40 (http://www.mpim-bonn.mpg.de/html/preprints/preprints.html), Max-Planck-Institut, Bonn (2001).Google Scholar
  29. 29.
    A. N. Sergeev, Sb. Math., 51, 419–427 (1985).zbMATHGoogle Scholar
  30. 30.
    E. V. Damaskinskii, P. P. Kulish, and M. A. Sokolov, J. Math. Sci. (New York), 88, 208–223 (1998); qalg/9505001 (1995).MathSciNetGoogle Scholar
  31. 31.
    A. P. Isaev, Sov. J. Part. Nucl., 26, 501–526 (1995); MPIM Preprint 2004-132 (http://www.mpim-bonn.mpg.de/html/preprints/preprints.html)., Max-Planck-Institut, Bonn (2004).Google Scholar
  32. 32.
    D. I. Gurevich, Leningrad Math. J., 2, 801–828 (1991).zbMATHMathSciNetGoogle Scholar
  33. 33.
    I. Tuba and H. Wenzl, J. Reine Angew. Math., 581, 31–69 (2005); math.QA/0301142 (2003).MathSciNetGoogle Scholar
  34. 34.
    B. Sturmfels, Algorithms in Invariant Theory, Springer, Vienna (1993).Google Scholar
  35. 35.
    H. M. Khudaverdian and Th. Th. Voronov, Lett. Math. Phys., 74, 201–228 (2005); math.DG/0309188 (2003).CrossRefMathSciNetGoogle Scholar
  36. 36.
    V. Lyubashenko and A. Sudbery, Duke Math. J., 90, 1–62 (1997); hep-th/9311095 (1993); M. L. Nazarov, Lett. Math. Phys., 21, 123–131 (1991).CrossRefMathSciNetGoogle Scholar
  37. 37.
    A. Mudrov, “Quantum conjugacy classes of simple matrix groups,” math.QA/0412538 (2004).Google Scholar
  38. 38.
    A. N. Kirillov, J. Sov. Math., 36, 115–128 (1987); A. N. Kirillov and N. Yu. Reshetikhin, J. Sov. Math., 52, 3156–3164 (1990).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • D. I. Gurevich
    • 1
  • P. N. Pyatov
    • 2
    • 3
  • P. A. Saponov
    • 4
  1. 1.Université de Valenciennes et du Hainaut-CambrésisValenciennesFrance
  2. 2.Max-Planck-Institut für MathematikBonnGermany
  3. 3.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow OblastRussia
  4. 4.Institute for High Energy PhysicsProtvino, Moscow OblastRussia

Personalised recommendations