Advertisement

Theoretical and Mathematical Physics

, Volume 146, Issue 1, pp 108–118 | Cite as

Bulk Correlation Functions in 2d Quantum Gravity

  • I. K. Kostov
  • V. B. Petkova
Article

Abstract

We compute the bulk three- and four-point tachyon correlators in the 2d Liouville gravity with a nonrational matter central charge c < 1, using and comparing two approaches. The continuous CFT approach exploits the action on the tachyons of the ground-ring generators deformed with Liouville and matter screening charges. We derive a general formula for the matter three-point OPE structure constants as a by-product. The discrete formulation of the theory is a generalization of the ADE string theories, in which the target space is the semi-infinite chain of points.

Keywords

noncritical strings conformal field theory two-dimensional gravity loop gas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    E. Witten, Nucl. Phys. B, 373, 187 (1992); hep-th/9108004 (1991).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    N. Seiberg and D. Shih, JHEP, 0402, 021 (2004); hep-th/0312170 (2003).ADSMathSciNetGoogle Scholar
  3. 3.
    D. Kutasov, E. Martinec, and N. Seiberg, Phys. Lett. B, 276, 437 (1992); hep-th/9111048 (1991).ADSMathSciNetGoogle Scholar
  4. 4.
    M. Bershadsky and D. Kutasov, Nucl. Phys. B, 382, 213 (1992); hep-th/9204049 (1992); S. Kachru, Modern Phys. Lett. A, 7, 1419 (1992); hep-th/9201072 (1992).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    I. K. Kostov, Nucl. Phys. B, 689, 3 (2004); hep-th/0312301 (2003).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    I. K. Kostov and V. B. Petkova, “Non-rational 2D quantum gravity: Ground ring versus loop gas,” in preparation.Google Scholar
  7. 7.
    I. K. Kostov, Nucl. Phys. B, 326, 583 (1989).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    I. K. Kostov, Nucl. Phys. B, 376, 539 (1992); hep-th/9112059 (1991).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    I. K. Kostov and M. Staudacher, Phys. Lett. B, 305, 43 (1993); hep-th/9208042 (1992).ADSMathSciNetGoogle Scholar
  10. 10.
    S. Higuchi and I. K. Kostov, Phys. Lett. B, 357, 62 (1995); hep-th/9506022 (1995).ADSMathSciNetGoogle Scholar
  11. 11.
    F. David, Modern Phys. Lett. A, 3, 1651 (1988); J. Distler and H. Kawai, Nucl. Phys. B, 321, 509 (1989).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    H. Dorn and H.-J. Otto, Nucl. Phys. B, 429, 375 (1994); hep-th/9403141 (1994); A. B. Zamolodchikov and Al. B. Zamolodchikov, Nucl. Phys. B, 477, 577 (1996); hep-th/9506136 (1995).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    V. S. Dotsenko and V. A. Fateev, Nucl. Phys. B, 251, 691 (1985).ADSMathSciNetGoogle Scholar
  14. 14.
    J. Teschner, Phys. Lett. B, 363, 65 (1995); hep-th/9507109 (1995).ADSGoogle Scholar
  15. 15.
    Al. B. Zamolodchikov, Theor. Math. Phys., 142, 183 (2005); hep-th/0505063 (2005).MathSciNetGoogle Scholar
  16. 16.
    P. Di Francesco and D. Kutasov, Nucl. Phys. B, 375, 119 (1992); hep-th/9109005 (1991).ADSGoogle Scholar
  17. 17.
    B. Nienhuis, “Coulomb gas formulation of 2-d phase transitions,” in: Phase Transitions and Critical Phenomena (C. C. Domb and J. L. Lebowitz, eds.), Vol. 11, Acad. Press, London (1987), p. 1.Google Scholar
  18. 18.
    G. E. Andrews, R. J. Baxter, and P. J. Forrester, J. Stat. Phys., 35, 193 (1984).CrossRefMathSciNetGoogle Scholar
  19. 19.
    V. Pasquier, Nucl. Phys. B, 285, 162 (1987).CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    O. Foda and B. Nienhuis, Nucl. Phys. B, 324, 643 (1989).CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    I. K. Kostov, B. Ponsot, and D. Serban, Nucl. Phys. B, 683, 309 (2004); hep-th/0307189 (2003).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    V. A. Kazakov and I. K. Kostov, Nucl. Phys. B, 386, 520 (1992); hep-th/9205059 (1992).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • I. K. Kostov
    • 1
  • V. B. Petkova
    • 2
  1. 1.Service de Physique TheoriqueCEA/Saclay — Orme des MerisiersGif-Sur-Yvette CedexFrance
  2. 2.Institute for Nuclear Research and Nuclear EnergySofiaBulgaria

Personalised recommendations