Advertisement

Theoretical and Mathematical Physics

, Volume 146, Issue 1, pp 73–84 | Cite as

Hamiltonian Structures of Fermionic Two-Dimensional Toda Lattice Hierarchies

  • V. V. Gribanov
  • V. G. Kadyshevsky
  • A. S. Sorin
Article

Abstract

By exhibiting the corresponding Lax-pair representations, we propose a wide class of integrable two-dimensional (2D) fermionic Toda lattice (TL) hierarchies, which includes the 2D N=(2|2) and N=(0|2) supersymmetric TL hierarchies as particular cases. We develop the generalized graded R-matrix formalism using the generalized graded bracket on the space of graded operators with involution generalizing the graded commutator in superalgebras, which allows describing these hierarchies in the framework of the Hamiltonian formalism and constructing their first two Hamiltonian structures. We obtain the first Hamiltonian structure for both bosonic and fermionic Lax operators and the second Hamiltonian structure only for bosonic Lax operators.

Keywords

integrable systems Toda lattices R-matrix Yang-Baxter equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. V. Mikhailov, JETP Letters, 30, 414 (1979); K. Ueno and K. Takasaki, Adv. Stud. Pure Math., 4, 1 (1984).ADSGoogle Scholar
  2. 2.
    M. A. Olshanetsky, Comm. Math. Phys., 88, 63 (1983); D. A. Leites, M. V. Saveliev, and V. V. Serganova, “Embeddings of osp(1|2) and the associated nonlinear supersymmetric equations,” in: Group Theoretical Methods in Physics (M. A. Markov, V. I. Manko, and V. V. Dodonov, eds.), Vol. 1, VNU Sci. Press, Utrecht (1986), p. 255; V. A. Andreev, Theor. Math. Phys., 72, 758 (1987).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    K. Ikeda, Lett. Math. Phys., 14, 321 (1987); J. Evans and T. Hollowood, Nucl. Phys. B, 352, 723 (1991); O. Lechtenfeld and A. Sorin, Nucl. Phys. B, 557, 535 (1999); J. Nonlinear Math. Phys., 8, 183 (2001); 11, 294 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    V. G. Kadyshevsky and A. S. Sorin, “Supersymmetric Toda lattice hierarchies,” in: Integrable Hierarchies and Modern Physical Theories (H. Aratyn and A. S. Sorin, eds.), Kluwer, Dordrecht (2001), p. 289; nlin.SI/0011009 (2000).Google Scholar
  5. 5.
    V. V. Gribanov, V. G. Kadyshevsky, and A. S. Sorin, Czech. J. Phys., 54, 1289 (2004).CrossRefMathSciNetGoogle Scholar
  6. 6.
    V. V. Gribanov, V. G. Kadyshevsky, and A. S. Sorin, Discrete Dyn. Nat. Soc., 2004, No.1, 113 (2004).CrossRefMathSciNetGoogle Scholar
  7. 7.
    V. B. Derjagin, A. N. Leznov, and A. Sorin, Nucl. Phys. B, 527, 643 (1998).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    G. Carlet, “The Hamiltonian structures of the two-dimensional Toda lattice and R-matrices,” math-ph/0403049 (2004).Google Scholar
  9. 9.
    V. G. Kadyshevsky and A. S. Sorin, Theor. Math. Phys., 132, 1080 (2002); nlin.SI/0206044 (2002).CrossRefGoogle Scholar
  10. 10.
    H. Aratyn and K. Bering, Internat. J. Mod. Phys. A, 20, 1367 (2005); nlin.SI/0402014 (2004).ADSMathSciNetGoogle Scholar
  11. 11.
    M. A. Semenov-Tyan-Shanskii, Funct. Anal. Appl., 17, 259 (1983).zbMATHMathSciNetGoogle Scholar
  12. 12.
    C. M. Yung, Modern Phys. Lett., 8, 129 (1993).ADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    W. Oevel and O. Ragnisco, Phys. A, 161, 181 (1989); L. Ch. Li and S. Parmenter, Comm. Math. Phys., 125, 545 (1989).MathSciNetGoogle Scholar
  14. 14.
    P. P. Kulish and E. K. Sklyanin, J. Sov. Math., 19, 1596 (1980).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. V. Gribanov
    • 1
  • V. G. Kadyshevsky
    • 1
  • A. S. Sorin
    • 1
  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubna, Moscow OblastRussia

Personalised recommendations