Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Dynamical Spin Susceptibility in the t-J Model: The Memory Function Method

  • 79 Accesses

  • 23 Citations

Abstract

Based on the method of the equations of motion for the relaxation function in terms of Hubbard operators, we evaluate the dynamical spin susceptibility for the t-J model in the paramagnetic phase. Using a Mori-type projection technique, we express the relaxation function in terms of the second-order memory function, which is evaluated in the approximation of coupled modes for hole excitations and spin fluctuations in the fourth order in the hopping parameter t and the exchange interaction J.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1.

    E. Manousakis, Rev. Modern Phys., 63, 1 (1991).

  2. 2.

    A. P. Kampf, Phys. Rep., 249, 219 (1994); M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Modern Phys., 70, 897 (1998).

  3. 3.

    T. Tanamoto, H. Kohno, and H. Fukuyama, J. Phys. Soc. Japan, 63, 2379 (1994); G. Stemman, C. Pepin, and M. Lavagna, Phys. Rev. B, 50, 4075 (1994).

  4. 4.

    P. Hedegard and M. B. Pedersen, Phys. Rev. B, 43, 11504 (1991); C. L. Kane, P. A. Lee, T. K. Ng, B. Chakraborty, and N. Read, Phys. Rev. B, 41, 2653 (1990); A. Auerbach and B. E. Larson, Phys. Rev. B, 43, 7800 (1991).

  5. 5.

    Yu. A. Izyumov and B. M. Letfulov, J. Phys., Condens. Matter., 2, 8905 (1990); Yu. A. Izyumov and J. A. Hedersen, Internat. J. Mod. Phys. B, 8, 1877 (1994); F. Onufrieva and J. Rossat-Mignod, Phys. Rev. B, 52, 7572 (1995).

  6. 6.

    E. Dagotto, Rev. Modern Phys., 66, 763 (1994); J. Jaklic and P. Prelovsek, Adv. Phys., 49, 1 (2000); R. Eder, Y. Ohta, and S. Maekawa, Phys. Rev. Lett., 74, 5124 (1995).

  7. 7.

    N. M. Plakida, Phys. Lett. A, 43, 481 (1973).

  8. 8.

    Yu. A. Tserkovnikov, Theor. Math. Phys., 49, 993 (1981).

  9. 9.

    Yu. A. Tserkovnikov, Theor. Math. Phys., 52, 712 (1982).

  10. 10.

    G. Jackeli and N. M. Plakida, Theor. Math. Phys., 114, 335 (1998).

  11. 11.

    A. Sherman and M. Schreiber, “Incommensurate spin dynamics in underdoped cuprate perovskites,” condmat/0501418 (2005).

  12. 12.

    S. Winterfeldt and D. Ihle, Phys. Rev. B, 58, 9402 (1998).

  13. 13.

    J. Kondo and K. Yamaji, Progr. Theoret. Phys., 47, 807 (1972); H. Shimahara and S. Takada, J. Phys. Soc. Japan, 61, 989 (1992).

  14. 14.

    S. Winterfeldt and D. Ihle, Phys. Rev. B, 59, 6010 (1999).

  15. 15.

    D. N. Zubarev, Sov. Phys. Usp., 3, 320 (1960).

  16. 16.

    I. Sega, P. Prelovsek, and J. Bonca, Phys. Rev. B, 68, 054524 (2003).

  17. 17.

    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, Benjamin, New York (1975).

  18. 18.

    H. Mori, Progr. Theoret. Phys., 33, 423 (1965); 34, 399 (1965).

  19. 19.

    V. P. Kalashnikov, Theor. Math. Phys., 34, 263 (1978).

  20. 20.

    V. G. Vaks, A. I. Larkin, and S. A. Pikin, JETP, 26, 188, 647 (1968).

  21. 21.

    P. W. Anderson, Science, 235, 1196 (1987).

  22. 22.

    J. Hubbard, Proc. Roy. Soc. A, 285, 542 (1965).

  23. 23.

    F. C. Zhang and T. M. Rice, Phys. Rev. B, 37, 3759 (1988); L. F. Feiner, J. H. Jefferson, and R. Raimondi, Phys. Rev. B, 53, 8751 (1996); V. Yu. Yushankhai, V. S. Oudovenko, and R. Hayn, Phys. Rev. B, 55, 15562 (1997).

Download references

Author information

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 145, No. 2, pp. 240–255, November, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vladimirov, A.A., Ihle, D. & Plakida, N.M. Dynamical Spin Susceptibility in the t-J Model: The Memory Function Method. Theor Math Phys 145, 1576–1589 (2005). https://doi.org/10.1007/s11232-005-0184-9

Download citation

Keywords

  • strong electron correlations
  • dynamical spin susceptibility
  • high-temperature superconductivity
  • t-J model