Advertisement

Theoretical and Mathematical Physics

, Volume 144, Issue 1, pp 995–1003 | Cite as

Soliton Resonances for the MKP-II

  • J.-H. Lee
  • O. K. Pashaev
Article

Abstract

Using the second flow (derivative reaction-diffusion system) and the third one of the dissipative SL(2, ℝ) Kaup-Newell hierarchy, we show that the product of two functions satisfying those systems is a solution of the modified Kadomtsev-Petviashvili equation in 2+1 dimensions with negative dispersion (MKP-II). We construct Hirota’s bilinear representations for both flows and combine them as the bilinear system for the MKP-II. Using this bilinear form, we find one- and two-soliton solutions for the MKP-II. For special values of the parameters, our solution shows resonance behavior with the creation of four virtual solitons. Our approach allows interpreting the resonance soliton as a composite object of two dissipative solitons in 1+1 dimensions.

Keywords

soliton resonance dissipative soliton modified Kadomtsev-Petviashvili equation Hirota method derivative reaction-diffusion system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    R. Jackiw, “Liouville field theory: A two-dimensional model for gravity,” in: Quantum Theory of Gravity (S. Christensen, ed.), Hilger, Bristol (1984), p. 403; C. Teitelboim, “The Hamiltonian structure of two-dimensional spacetime and its relation with the conformal anomaly,” in: Op. cit., p. 327.Google Scholar
  2. 2.
    L. Martina, O. K. Pashaev, and G. Soliani, Class.Q.Grav., 14, 3179 (1997); Phys. Rev. D, 58, 084025 (1998).CrossRefGoogle Scholar
  3. 3.
    O. K. Pashaev and J.-H. Lee, Modern Phys. Lett. A, 17, 1601 (2002).CrossRefGoogle Scholar
  4. 4.
    O. K. Pashaev and M. L. Y. Francisco, Theor. Math. Phys., 144, No.1, 1022 (2005).CrossRefGoogle Scholar
  5. 5.
    J.-H. Lee, C.-K. Lin, and O. K. Pashaev, “Equivalence relation and bilinear representation for derivative NLS type equations,” in: Nonlinearity, Integrability, and All That: Twenty Years After NEEDS’79 (M. Boiti, L. Martina, F. Pempinelly, B. Prinary, and G. Soliani, eds.), World Scientific, Singapore (2000), p. 175.Google Scholar
  6. 6.
    O. K. Pashaev and J.-H. Lee, ANZIAM J., 44, 73 (2002).Google Scholar
  7. 7.
    Z. Yan, Chaos Solitons Fractals, 14, 45 (2002).CrossRefGoogle Scholar
  8. 8.
    J.-H. Lee, Trans.Amer.Math.Soc., 314, 107 (1989).Google Scholar
  9. 9.
    B. Konopelchenko and W. Strampp, J. Math. Phys., 33, 3676 (1992).CrossRefGoogle Scholar
  10. 10.
    Y. Cheng and Y.-S. Li, J. Phys. A, 25, 419 (1992).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • J.-H. Lee
    • 1
  • O. K. Pashaev
    • 2
  1. 1.Institute of MathematicsAcademia SinicaTaipeiTaiwan
  2. 2.Department of MathematicsIzmir Institute of TechnologyUrla-IzmirTurkey

Personalised recommendations