Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Hopf graph algebra and renormalization group equations

  • 45 Accesses

  • 5 Citations

Abstract

We study the renormalization group equations implied by the Hopf graph algebra. The vertex functions are regarded as vectors in the dual space of the Hopf algebra. The renormalization group equations for these vertex functions are equivalent to those for individual Feynman integrals. The solution of the renormalization group equations can be represented in the form of an exponential of the beta function. We clearly show that the exponential of the one-loop beta function allows finding the coefficients of the leading logarithms for individual Feynman integrals. The calculation results agree with those obtained in the parquet approximation.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1.

    N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantum Fields [in Russian], Nauka, Moscow (1976); English transl., Wiley, New York (1980); J. Collins, Renormalization: An Introduction to Renormalization, the Renormalization Group, and the Operator-Product Expansion, Cambridge Univ. Press, New Rochelle (1984).

  2. 2.

    K. G. Chetyrkin, Nuovo Cimento A, 103, 1653 (1990).

  3. 3.

    A. Connes and D. Kreimer, Comm. Math. Phys., 210, 249 (2000); hep-th/9912092 (1999).

  4. 4.

    A. Connes and D. Kreimer, Comm. Math. Phys., 216, 215 (2001); hep-th/0003188 (2000).

  5. 5.

    D. V. Malyshev, Phys. Lett. B, 578, 231 (2004); hep-th/0307301 (2003).

  6. 6.

    D. V. Malyshev, “Non RG logarithms via RG equations,” hep-th/0402074 (2004).

  7. 7.

    A. Connes and H. Moscovici, Comm. Math. Phys., 198, 199 (1998); math.DG/9806109 (1998); A. Gerasimov, A. Morozov, and K. Selivanov, Internat. J. Mod. Phys. A, 16, 1531 (2001); hep-th/0005053 (2000).

  8. 8.

    D. Kreimer, Adv. Theor. Math. Phys., 3, 627 (1999); hep-th/9901099 (1999).

  9. 9.

    A. M. Polyakov, JETP, 30, 151 (1969).

  10. 10.

    I. V. Volovich and D. V. Prokhorenko, Trudy Mat. Inst. Steklov., 147, 166 (2004).

  11. 11.

    D. Malyshev, JHEP, 0205, 013 (2002); hep-th/0112146 (2001).

  12. 12.

    V. A. Smirnov and E. R. Rakhmetov, Theor. Math. Phys., 120, 870 (1999); hep-ph/9812529 (1998); V. A. Smirnov, Phys. Lett. B, 465, 226 (1999); hep-ph/9907471 (1999).

Download references

Author information

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 143, No. 1, pp. 22–32, April, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Malyshev, D.V. The Hopf graph algebra and renormalization group equations. Theor Math Phys 143, 505–514 (2005). https://doi.org/10.1007/s11232-005-0086-x

Download citation

Keywords

  • Hopf graph algebra
  • renormalization group
  • leading logarithms