Theoretical and Mathematical Physics

, Volume 142, Issue 1, pp 138–152 | Cite as

Obtaining equations of motion for charged particles in the (v/c)3-approximation by the Einstein-Infeld-Hoffmann method

  • M. V. Gorbatenko


We consider some principal methodological problems that appear when the Einstein-Infeld-Hoffmann method is used to find approximate solutions of the general relativity equations and to obtain information about the motion of particles whose interaction force is much greater than the gravitational attraction force. Among these problems are normalizing approximate expressions by expanding exact solutions written in the same coordinate conditions used in the Einstein-Infeld-Hoffmann method, assigning the smallness orders depending on relations between the smallness parameters in play, and verifying cancellations of divergent terms arising in surface integrals. Solving these questions in accordance with the internal logic of the Einstein-Infeld-Hoffmann method results in new tools and techniques for applying the method. We demonstrate these tools and techniques in the example of the problem of the motion of two electrically charged pointlike particles in the (v/c)3-approximation.


Einstein-Infeld-Hoffmann method equations of motion in post-post-Coulomb approximation radiation friction force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, L. Infeld, and B. Hoffmann, Ann. Math., 39, 65 (1938).Google Scholar
  2. 2.
    A. Einstein and L. Infeld, Can. J. Math., 1, 209 (1949).Google Scholar
  3. 3.
    J. L. Anderson, Phys. Rev. D, 56, 4675 (1977).Google Scholar
  4. 4.
    M. V. Gorbatenko and A. V. Pushkin, Voprosy At. Nauki i Tekhn. Ser. Teor. Prikl. Fiz., No. 2, 28 (1985).Google Scholar
  5. 5.
    M. V. Gorbatenko and T. M. Gorbatenko, Theor. Math. Phys., 140, 1028 (2004).Google Scholar
  6. 6.
    V. A. Brumberg, Relativistic Celestial Mechanics [in Russian], Nauka, Moscow (1972); English transl.: Essential Relativistic Celestial Mechanics, Adam Hilger, Bristol (1991).Google Scholar
  7. 7.
    A. A. Logunov and M. A. Mestvirishvili, The Relativistic Theory of Gravitation [in Russian], Nauka, Moscow (1989); English transl., Mir, Moscow (1989).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Classical Field Theory [in Russian] (Course of Theoretical Physics, Vol. 2, 7th ed.), Nauka, Moscow (1988); English transl. prev. ed., Pergamon, Oxford (1975).Google Scholar
  9. 9.
    R. P. Feynman, Phys. Rev., 74, 939 (1948).Google Scholar
  10. 10.
    P. A. M. Dirac, Proc. Roy. Soc. London A, 176, 148 (1938).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • M. V. Gorbatenko
    • 1
  1. 1.Russian Federal Nuclear CenterAll-Russian Research Institute for Experimental PhysicsSarov, Nizhny Novgorod OblastRussia

Personalised recommendations