Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Boundary integrability of nonlinear sigma models

  • 37 Accesses

  • 3 Citations

Abstract

We describe recent work on the classical integrability of the principal chiral model and general sigma models with boundaries in (compact) symmetric spaces.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1.

    I. V. Cherednik, Theor. Math. Phys., 61, 977 (1984); S. Ghoshal and A. Zamolodchikov, Internat. J. Mod. Phys. A, 9, 3841 (1994); hep-th/9306002 “Erratum,” 9, 4353 (1993).

  2. 2.

    E. Corrigan, “Reflections,” hep-th/9601055 (1996); “Integrable field theory with boundary conditions,” in: Frontiers in Quantum Field Theory (C.-Z. Zha and K. Wu, eds.), World Scientific, Singapore (1998), p. 9; hep-th/9612138 (1996).

  3. 3.

    E. Corrigan and Z.-M. Sheng, Internat. J. Mod. Phys. A, 12, 2825 (1997); hep-th/9612150 (1996).

  4. 4.

    S. Ghoshal, Phys. Lett. B, 334, 363 (1994); hep-th/9401008 (1994).

  5. 5.

    M. Moriconi, Nucl. Phys. B, 619, 396 (2001); hep-th/0108039 (2001); “Integrable boundary conditions for the O(N) nonlinear sigma model,” in: Statistical Field Theories (NATO Sci. Ser. II, Math. Phys. Chem., Vol. 73, A. Cappelli and G. Mussardo, eds.), Kluwer, Dordrecht (2002); hep-th/0111195 (2001).

  6. 6.

    W. He and L. Zhao, Phys. Lett. B, 570, 251 (2003); hep-th/0307002 (2003).

  7. 7.

    N. J. MacKay and B. J. Short, Comm. Math. Phys., 233, 313 (2003); “Erratum,” 245, 425 (2004); hepth/ 0104212 (2001).

  8. 8.

    G. W. Delius, N. J. MacKay, and B. J. Short, Phys. Lett. B, 522, 335 (2001); “Erratum,” 524, 401 (2002); hep-th/0109115 (2001).

  9. 9.

    N. J. MacKay and C. A. S. Young, Phys. Lett. B, 588, 221 (2004); hep-th/0402182 (2004).

  10. 10.

    H. Eichenherr, Nucl. Phys. B, 164, 528 (1980); 282, 745 (1987); J.-P. Antoine and B. Piette, J. Math. Phys., 28, 2753 (1987).

  11. 11.

    J. M. Evans, M. Hassan, N. J. MacKay, and A. J. Mountain, Nucl. Phys. B, 561, 385 (1999); hep-th/9902008 (1999).

  12. 12.

    J. M. Evans and A. J. Mountain, Phys. Lett. B, 483, 290 (2000); hep-th/0003264 (2000).

  13. 13.

    N. J. MacKay, J. Phys. A, 35, 7865 (2002); math.QA/0205155 (2002).

  14. 14.

    P. Goddard, W. Nahm, and D. Olive, Phys. Lett. B, 160, 111 (1985); C. Daboul, J. Math. Phys., 37, 3576 (1996); hep-th/9604108 (1996).

  15. 15.

    A. Molev, M. Nazarov, and G. Olshanskii, Russ. Math. Surveys, 51, 205 (1996).

  16. 16.

    H. Eichenherr and M. Forger, Nucl. Phys. B, 155, 381 (1978).

  17. 17.

    M. Forger, J. Laartz, and U. Schaeper, Comm. Math. Phys., 146, 397 (1992); hep-th/9201025 (1992).

  18. 18.

    Y. Y. Goldschmidt and E. Witten, Phys. Lett. B, 91, 392 (1980).

  19. 19.

    E. Abdalla and M. C. B. Abdalla, Phys. Rev. D, 23, 1800 (1981); E. Abdalla, M. Gomes, and M. Forger, Nucl. Phys. B, 210, 181 (1982).

  20. 20.

    J. M. Evans, Nucl. Phys. B, 608, 591 (2001); hep-th/0101231 (2001).

  21. 21.

    J. M. Evans, M. Hassan, N. J. MacKay, and A. J. Mountain, “Conserved charges and supersymmetry in principal chiral models,” hep-th/9711140 (1997).

  22. 22.

    D. Bernard, Comm. Math. Phys., 137, 191 (1991).

  23. 23.

    E. Ogievetsky, N. Reshetikhin, and P. Wiegmann, Nucl. Phys. B, 280, 45 (1987); E. Ogievetsky and P.Wiegmann, Phys. Lett. B, 168, 360 (1986).

  24. 24.

    P. Fendley, Phys. Rev. B, 63, 104429 (2001); cond-mat/0008372 (2000); JHEP, 0105, 050 (2001); hepth/ 0101034 (2001); A. Babichenko, Phys. Lett. B, 554, 96 (2003); hep-th/0211114 (2002).

  25. 25.

    P. E. Dorey, Nucl. Phys. B, 358, 654 (1991).

Download references

Author information

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 142, No. 2, pp. 322–328, February, 2005.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

MacKay, N.J. Boundary integrability of nonlinear sigma models. Theor Math Phys 142, 270–274 (2005). https://doi.org/10.1007/s11232-005-0069-y

Download citation

Keywords

  • integrable field theory
  • sigma models
  • integrability of theories with boundaries