Advertisement

Systematic Parasitology

, Volume 96, Issue 7, pp 527–552 | Cite as

Re-examination of the phylogenetic relationships within the Gyliauchenidae Fukui, 1929 (Digenea) based on morphological and molecular evidence with a proposal for Paragyliaucheninae n. subfam. and a description of Flagellotrema convolutum Ozaki, 1936

  • Yasser F. M. Karar
  • Charles K. BlendEmail author
  • Refaat M. A. Khalifa
  • Hemely Abdel-Shafy Hassan
  • Hoda S. Mohamadain
  • Norman O. Dronen
Article
  • 36 Downloads
Part of the following topical collections:
  1. Digenea

Abstract

Flagellotrema convolutum Ozaki, 1936 was found parasitising the intestine of two new host fish species, the Indian sail-fin surgeonfish, Zebrasoma desjardinii (Bennett) (Acanthuridae), and the Picasso triggerfish, Rhinecanthus assasi (Forsskål) (Balistidae), from the northern Red Sea off Egypt. Another description of this species is provided with detailed morphological observations made of the genital systems. Using newly acquired molecular data from the D1–D3 regions of 28S rDNA, the phylogenetic relationships of subfamilies and genera within the Gyliauchenidae Fukui, 1929 are elucidated with morphological support. The Petalocotylinae Ozaki, 1934 and the Robphildollfusiinae Paggi & Orecchia, 1963 are recognized as valid subfamilies within the Gyliauchenidae. The Apharyngogyliaucheninae Yamaguti, 1942 and the Ichthyotreminae Caballero & Bravo-Hollis, 1952 remain junior synonyms of the Gyliaucheninae Fukui, 1929. Based on its unique position relative to all gyliauchenid subfamilies and its distinct separation from all other gyliauchenine genera, the Paragyliaucheninae n. subfam. is erected to contain Paragyliauchen Yamaguti, 1934. Paragyliauchen differs from all other gyliauchenine genera by having a pharynx differentiated into two, well-developed muscular regions: an anterior region composed of a ring with indented projections anteriorly and a posterior region that is ellipsoidal or barrel-shaped. Modified and/or new keys to the four subfamilies we recognize within the Gyliauchenidae as well as the genera within each subfamily are presented, and we discuss the evolutionary development and etymology of the unique anatomy of the anterior of gyliauchenids.

Notes

Acknowledgements

We are grateful to the Zoology Department, Faculty of Science, South Valley University, Qena, Egypt, for the cooperation and help given to YFMK including the Central Laboratory there for providing and lending instruments, tools and requested materials for molecular work. We thank Dr Tom Cribb, University of Queensland, Queensland, Australia, and the Interlibrary Loan Division of the Evans Library, Texas A&M University, who provided YFMK and NOD needed literature. Mrs Eileen Harris, Senior Curator, The Natural History Museum, London, UK, kindly accessioned deposited specimens of F. convolutum. The extended loan of microscopes and other equipment to CKB by Gordon College, Wenham, Massachusetts, as well as support by the Corpus Christi Museum of Science and History, Corpus Christi, Texas, remains greatly appreciated. Comments by the reviewer and editor were quite beneficial in improving this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional, national and international guidelines for the care and use of animals were followed.

References

  1. Antar, R., Georgieva, S., Gargouri, L., & Kostadinova, A. (2015). Molecular evidence for the existence of species complexes within Macvicaria Gibson & Bray, 1982 (Digenea: Opecoelidae) in the western Mediterranean, with descriptions of two new species. Systematic Parasitology, 91, 211–229.Google Scholar
  2. Barker, S. C., Blair, D., Garrett, A. R., & Cribb, T. H. (1993). Utility of the Dl domain of nuclear 28S rRNA for phylogenetic inference in the Digenea. Systematic Parasitology, 26, 181–188.CrossRefGoogle Scholar
  3. Bartoli, P. (1987). Caractères adaptatifs originaux des Digènes intestinaux de Sarpa salpa (Teleostei, Sparidae) et leur interprétation en termes d’évolution. Annales de Parasitologie Humaine et Comparée, 62, 542–576.CrossRefGoogle Scholar
  4. Blair, D., & Barker, S. C. (1993). Affinities of the Gyliauchenidae: utility of the 18S rRNA gene for phylogenetic inference in the Digenea (Platyhelminthes). International Journal for Parasitology, 23, 527–532.CrossRefGoogle Scholar
  5. Blasco-Costa, I., Cutmore, S. C., Miller, T. L., & Nolan, M. J. (2016). Molecular approaches to trematode systematics: ‘best practice’ and implications for future study. Systematic Parasitology, 93, 295–306.CrossRefGoogle Scholar
  6. Blend, C. K., Karar, Y. F. M., & Dronen, N. O. (2017). Revision of the Megaperidae Manter, 1934 n. comb. (Syn. Apocreadiidae Skrjabin, 1942) including a reorganization of the Schistorchiinae Yamaguti, 1942. Zootaxa, 4358, 001–044.CrossRefGoogle Scholar
  7. Bray, R. A. (2005). Superfamily Lepocreadioidea Odhner, 1905. In: Jones, A., Bray, R. A. & Gibson, D. I. (Eds), Keys to the Trematoda. Vol. 2. Wallingford: CABI Publishing and the Natural History Museum, pp. 540–543.Google Scholar
  8. Bray, R. A., & Cribb, T. H. (2012). Reorganisation of the superfamily Lepocreadioidea Odhner, 1905 based on an inferred molecular phylogeny. Systematic Parasitology, 83, 169–177.CrossRefGoogle Scholar
  9. Bray, R. A., Cribb, T. H., & Cutmore, S. C. (2018). Lepocreadiidae Odhner, 1905 and Aephnidiogenidae (Digenea: Lepocreadioidea) of fishes from Moreton Bay, Queensland, Australia, with the erection of a new family and genus. Systematic Parasitology, 95, 479–498.CrossRefGoogle Scholar
  10. Bray, R. A., Waeschenbach, A., Cribb, T., Weedall, G., Dyal, P., & Littlewood, D. (2009). The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution. Acta Parasitologica, 54, 310–329.Google Scholar
  11. Bush, A. O., Lafferty, K. D., Lotz, J. M., & Shostak, A. W. (1997). Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 575–583.CrossRefGoogle Scholar
  12. Caballero, E., & Bravo-Hollis, M. (1952). Ichthyotrema vogelsangi ng, n. sp. (Trematoda: Digenea) en peces marinos de aguas Mexicanas. Anales del Instituto de Biología. Universidad Nacional Autonóma de México, 23, 155–165.Google Scholar
  13. Cribb, T. H., & Bray, R. A. (2010). Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology, 76, 1–7.CrossRefGoogle Scholar
  14. Cribb, T. H., Bray, R. A., Littlewood, D. T. J., Pichelin, S., & Herniou, E. A. (2001). Relationships of the Digenea - evidence from molecules and morphology. In: Littlewood, D. T. J. & Bray, R. A. (Eds), Interrelationships of the Platyhelminthes. London: Taylor & Francis, pp. 186–193.Google Scholar
  15. Dronen, N. O., Blend, C. K., Khalifa, R. M. A., Mohamadain, H. S., & Karar, Y. F. M. (2016). Pelopscreadium aegyptense n. gen., n. sp. and Pelopscreadium spongiosum (Bray & Cribb, 1998) n. comb., (Digenea: Lepocreadiidae), each from disjunct populations of the yellow boxfish, Ostracion cubicus Linnaeus (Ostraciidae). Zootaxa, 4127, 567–578.CrossRefGoogle Scholar
  16. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.CrossRefGoogle Scholar
  17. Froese, R., & Pauly, D. (Eds). (2019). FishBase. Version 02/2019. http://www.fishbase.org. Accessed 19 April 2019.
  18. Fukui, T. (1929). Studies on Japanese amphistomatous parasites, with revision of the group. Japanese Journal of Zoology, Transactions and Abstracts, 2, 219–351.Google Scholar
  19. Garcia, L. S., & Ash, L. R. (1979). Diagnostic parasitology: clinical laboratory manual (2nd ed.). London: The C.V. Mosby Company.Google Scholar
  20. Hall, K. A. (2004). The taxonomy, systematics and evolutionary biology of the Gyliauchenidae Fukui, 1929 (1918) (Platyhelminthes: Digenea), PhD Thesis, School of Molecular and Microbial Sciences. Queensland, Australia; The University of Queensland.Google Scholar
  21. Hall, K. A., & Chambers, C. (1999). A new genus of the Gyliauchenidae Goto et Matsudaira, 1918 (Digenea) from Naso tuberosus (Percomorpha, Acanthuridae) on the Great Barrier Reef, Queensland, Australia. Acta Parasitologica, 44, 229–232.Google Scholar
  22. Hall, K. A., & Cribb, T. H. (2000). The status of Petalocotyle Ozaki, 1934 (Digenea: Gyliauchenidae), including the description of two new species from acanthurid fishes in Queensland, Australia. Systematic Parasitology, 47, 145–156.CrossRefGoogle Scholar
  23. Hall, K. A., & Cribb, T. H. (2004a). Ptychogyliauchen, a new genus of Gyliauchenidae (Platyhelminthes: Digenea) from siganid fishes of the Indo-West Pacific. Invertebrate Systematics, 18, 607–625.CrossRefGoogle Scholar
  24. Hall, K. A., & Cribb, T. H. (2004b). Revision of Affecauda Hall & Chambers, 1999 (Digenea: Gyliauchenidae Fukui, 1929), including the description of two new species from fishes of the Indo-West Pacific. Zootaxa, 778, 1–12.CrossRefGoogle Scholar
  25. Hall, K. A., & Cribb, T. H. (2005). Family Gyliauchenidae Ozaki, 1933. In A. Jones, R. A. Bray, & D. I. Gibson (Eds), Keys to the Trematoda. Vol. 2. Wallingford: CABI Publishing and the Natural History Museum, pp. 665–678.CrossRefGoogle Scholar
  26. Hall, K. A., & Cribb, T. H. (2008). Revision of Flagellotrema Ozaki, 1936 (Digenea, Gyliauchenidae Fukui, 1929), including the description of two species from acanthuroid fishes from the Great Barrier Reef, Queensland, Australia. Zootaxa, 1718, 1–35.CrossRefGoogle Scholar
  27. Huston, D. C., Miller, T. L., Cutmore, S. C., & Cribb, T. H. (2019). A new genus and species of the trematode family Gyliauchenidae Fukui, 1929 from an unexpected, but plausible, host, Kyphosus cornelii (Perciformes: Kyphosidae). Parasitology, 7, 937–946.CrossRefGoogle Scholar
  28. ICZN (2012). International Commission on Zoological Nomenclature: Amendment of articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Bulletin of Zoological Nomenclature, 69, 161–169.CrossRefGoogle Scholar
  29. Kozlov, A., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A. (2018). RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. bioRxiv, 447110.Google Scholar
  30. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.CrossRefGoogle Scholar
  31. Lieske, E., & Myers, R. F. (1994). Collins pocket guide. Coral reef fishes: Caribbean, Indian Ocean, and Pacific Ocean including the Red Sea. London: Harper Collins.Google Scholar
  32. Lieske, E., & Myers, R. F. (1996). Coral reef fishes: Caribbean, Indian Ocean and Pacific Ocean including the Red Sea (Vol. 41). Princeton: Princeton University Press.Google Scholar
  33. Lieske, E., Fiedler, K. E., & Myers, R. F. (2004). Coral reef guide: Red Sea to Gulf of Aden, South Oman; [the definitive guide to over 1200 species of underwater life]. London: Collins.Google Scholar
  34. López-Román, R., Kim, M., Vilca-Choque, J., & Gijón Botella, H. (1992). Description of a new species of the genus Robphildollfusium Paggi & Orecchia, 1963. In: Rodríguez, S. H. (Ed.), In memoriam to Professor Doctor D. Francisco de Paula Martínez Gómez. Cordoba, Argentina: Universidad Nacional de Cordoba, pp. 181–204.Google Scholar
  35. Machida, M. (1984). Two new trematodes from tropical marine fishes of southwestern Japan. Bulletin of the National Science Museum, Tokyo, Series A, Zoology, 10, 51–55.Google Scholar
  36. Manter, H. W., & Pritchard, M. H. (1962). Studies on digenetic trematodes of Hawaiian fishes: Families Fellodistomatidae, Opistholebetidae and Gyliauchenidae. Transactions of the American Microscopical Society, 81, 113–123.CrossRefGoogle Scholar
  37. Nahhas, F. M., & Wetzel, J. A. (1995). Digenetic trematodes of marine fishes from Suva, Fiji: The Family Gyliauchenidae Ozaki, 1933. Journal of the Helminthological Society of Washington, 62, 117–130.Google Scholar
  38. Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author: Evolutionary Biology Centre, Uppsala University.Google Scholar
  39. Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A., & Littlewood, D. T. J. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology, 33, 733–755.CrossRefGoogle Scholar
  40. Ozaki, Y. (1933). Telotrema caudatum n. gen. n. sp., a new type for the trematode family Gyliauchenidae (Goto et Matsudaira.). Zoologischer Anzeiger, 103, 329–332.Google Scholar
  41. Ozaki, Y. (1934). Petalocotyle nipponica, a new type of the trematode family Allocreadiidae. Proceedings of the Imperial Academy, 10, 111–114.CrossRefGoogle Scholar
  42. Ozaki, Y. (1936). Short Reports. Flagellotrema convolutum, n. g., n. sp., a new trematode of the family Gyliauchenidae. Zoological Magazine (Japan), 48, 951–953.Google Scholar
  43. Ozaki, Y. (1937). Studies on the trematode families Gyliauchenidae and Opistholebetidae, with special reference to lymph system. II. Journal of Science of the Hiroshima University, Series B, Division 1. Zoology, 5, 167–244.Google Scholar
  44. Paggi, L., & Orecchia, P. (1963). Revisione della pozione sistematica eli Distomum fractum Rudolphi, 1819 e proposta eliun nuovo genere Robphildollfusium gen. nov. e eliuna nuova famiglia Robphildollfusidae [sic] fam. nov. per questa specie. Parassitologia, 5, 131–143.Google Scholar
  45. Pearson, J. C. (1992). On the position of the digenean family Heronimidae: an inquiry into a cladistic classification of the Digenea. Systematic Parasitology, 21, 81–166.CrossRefGoogle Scholar
  46. Randall, J. E. (1982). The diverʼs guide to Red Sea reef fishes. Biblios Pub Distribution Service.Google Scholar
  47. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefGoogle Scholar
  48. Rudolphi, K. A. (1819). Entozoorum synopsis cui accedunt mantissa duplex et indeces locupletissimi. Berlin: Sumtibus Augusti Rucker.CrossRefGoogle Scholar
  49. Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  50. Tkach, V. V., Littlewood, D. T. J., Olson, P. D., Kinsella, J. M., & Swiderski, Z. (2003). Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Systematic Parasitology, 56, 1–15.CrossRefGoogle Scholar
  51. WoRMS Editorial Board. (2019). World Register of Marine Species. http://www.marinespecies.org at VLIZ. Accessed 2019-05-25.  https://doi.org/10.14284/170.
  52. Yamaguti, S. (1934). Studies on the helminth fauna of Japan. Part 2, Trematodes of fishes. I. Japanese Journal of Zoology, 5, 249–541.Google Scholar
  53. Yamaguti, S. (1942). Studies on the helminth fauna of Japan. Part 39. Trematodes of fishes mainly from Naha. Transactions of the Biogeographical Society of Japan, 3, 329–398.Google Scholar
  54. Yamaguti, S. (1958). Systema helminthum. Vol. 1. The digenetic trematodes of vertebrates. Part 1. New York: Interscience Publishers Inc.Google Scholar
  55. Yamaguti, S. (1971). Synopsis of digenetic trematodes of vertebrates. Vols. I & II. Tokyo: Keigaku Publishing Company.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Zoology, Faculty of SciencesSouth Valley UniversityQenaEgypt
  2. 2.Corpus Christi Museum of Science & HistoryCorpus ChristiUSA
  3. 3.Department of Medical Parasitology, Faculty of MedicineAssiut UniversityAssiutEgypt
  4. 4.Laboratory of Parasitology, Department of Wildlife and Fisheries SciencesTexas A &M UniversityCollege StationUSA

Personalised recommendations