Morphological, molecular and phylogenetic characterisation of Eimeria macyi Wheat, 1975 (Apicomplexa: Eimeriidae) in the eastern red bat Lasiurus borealis (Müller) from Mississippi, USA

  • Thomas P. Miles
  • Scott A. Rush
  • Thomas G. RosserEmail author


In November 2017, oöcysts of the coccidian Eimeria macyi Wheat, 1975 were isolated from the faeces of a single eastern red bat Lasiurus borealis Müller in Lowndes County, Mississippi, USA. Sporulated oöcysts, morphologically consistent with previous accounts of E. macyi in other chiropterans, were spherical to sub-spherical in shape with a highly mamillated outer wall that appears bi-layered. Oöcysts allowed to sporulate in 2.5% potassium dichromate at ambient temperature (c.23°C) for 7 days were 17–25 × 15–20 (20.7 × 17.9) µm. Micropyle and oöcyst residuum were absent with one to two polar granules scattered among sporocysts. The four ovoid sporocysts were 7–12 × 6–8 (9.9 × 7.1) µm. Stieda bodies were prominent and sub-Stieda bodies were present. Two sporozoites were reflexed within each sporocyst. Nuclear 18S rRNA gene, plastid 23S rRNA gene and mitochondrial cytochrome c oxidase subunit 1 (cox1) gene were sequenced from sporulated oöcysts and compared to other molecular data of Eimeria spp. from rodent and chiropteran hosts. No sequence data in the NCBI database matched E. macyi. Phylogenetic analyses of the sequence data of the 18S rRNA and 23S rRNA genes placed E. macyi within a clade containing Eimeria spp. from rodents and basal to a clade populated by sequences derived from Eimeria spp. of rodents and bats. This account represents a new host record of E. macyi in an eastern red bat and a new geographic locality. Additionally, the cox1 sequence data of Eimeria macyi represents the first mitochondrial sequence of an Eimeria sp. in bats.



We would like to thank Ethan Woodyard for reviewing the initial draft of the manuscript.


This work was supported by the Mississippi State University College of Veterinary Medicine.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institution, national and international guidelines for the care and use of animals were followed.


  1. Afonso, E., Baurand, P. E., Tournant, P., & Capelli, N. (2014). First amplification of Eimeria hessei DNA from the lesser horseshoe bat (Rhinolophus hipposideros) and its phylogenetic relationships with Eimeria species from other bats and rodents. Experimental Parasitology, 139, 58–62.CrossRefGoogle Scholar
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic Local Alignment Search Tool. Journal of Molecular Biology, 215, 403–410.CrossRefGoogle Scholar
  3. Duszynski, D. W., Reduker, D. W., & Parker, B. B. (1988). Eimeria from bats of the world. II. A new species in Tadarida femorosacca from Sonora, Mexico. Journal of Parasitology, 74, 317–321.CrossRefGoogle Scholar
  4. Duszynski, D. W., Scott, D. T., Aragon, J., Leach, A., & Perry, T. (1999). Six new Eimeria species from verspertilionid bats of North America. Journal of Parasitology, 85, 496–503.CrossRefGoogle Scholar
  5. Eberhard, M. L., da Silva, A. J., Lilley, B. G., & Pieniazek, N. J. (1999). Morphologic and molecular characterization of a new Cyclospora species from Ethiopian monkeys: C. cercopitheci sp. n., C. colobi sp. n., and C. papionis sp. n. Emerging Infectious Diseases, 5, 651–658.CrossRefGoogle Scholar
  6. Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acid Research, 30, 3059–3066.CrossRefGoogle Scholar
  7. Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.CrossRefGoogle Scholar
  8. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.CrossRefGoogle Scholar
  9. Long, P. L., & Joyner, L. P. (1984). Problems in the identification of species of Eimeria. Journal of Protozoology, 31, 535–541.CrossRefGoogle Scholar
  10. McAllister, C. T., Burt, S., Seville, R. S., & Robison, H. W. (2011). A new species of Eimeria (Apicomplexa: Eimeriidae) from the eastern pipistrelle, Perimyotis subflavus (Chiroptera: Vespertilionidae), in Arkansas. Journal of Parasitology, 97, 896–898.CrossRefGoogle Scholar
  11. McAllister, C. T., Connior, M. B., Bursey, C. R., Durden, L. A., Seville, R. S., Robison, H. W., & Tauth, S. E. (2016). Parasites (Coccidia, Trematoda, Acari) of tri-colored bats, Perimyotis subflavus (Chiroptera: Vespertilionidae): New geographical records for Oklahoma. Proceedings of the Okalhoma Academy of Sciences, 96, 63–69.Google Scholar
  12. McAllister, C. T., Seville, R. S., Arlen, R., & Connior, M. B. (2014). A new species of Eimeria (Apicomplexa: Eimeriidae) form tri-colored bats, Perimyotis subflavus (Chiroptera: Vespertilionidae), from the Ouachitas of Arkansas. Acta Parasitologica, 59, 690–693.Google Scholar
  13. McAllister, C. T., Seville, R. S., & Bursey, C. R. (2017). Helminth (Cestoda, Nematoda) and coccidian (Apicomplexa: Eimeriidae) parasites of the eastern small-footed myotis, Myotis leibii (Chiroptera: Vespertilionidae) from Arkansas, with a description of a new species of Eimeria. Acta Parasitologica, 62, 377–381.Google Scholar
  14. McAllister, C. T., Seville, R. S., & Roehrs, Z. P. (2012). A new species of Eimeria (Apicomplexa: Eimeriidae) from the northern myotis, Myotis septentrionalis (Chiroptera: Vespertilionidae), in Oklahoma. Journal of Parasitology, 98, 1003–1005.CrossRefGoogle Scholar
  15. McAllister, C. T., & Upton, S. J. (2009). Two new species of Eimeria (Apicomplexa: Eimeriidae) from eastern red bats, Lasiurus borealis (Chiroptera: Vespertilionidae), in Arkansas and North Carolina. Journal of Parasitology, 95, 991–993.CrossRefGoogle Scholar
  16. McAllister, C. T., Upton, S. J., Trauth, S. E., & Allard, D. W. (2001). A redescription of Eimeria macyi (Apicomplexa: Eimeriidae) from the eastern pipistrelle, Pipistrellus subflavus (Mammalia: Chiroptera), from Arkansas. Journal of the Arkansas Academy of Science, 55, 181–183.Google Scholar
  17. Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. New York: Oxford University Press.Google Scholar
  18. Ogedengbe, J. D., Hanner, R. H., & Barta, J. R. (2011). DNA barcoding identifies Eimeria species and contributes to the phylogenetics of coccidian parasites (Eimeriorina, Apicomplexa, Alveolata). International Journal for Parasitology, 41, 843–850.CrossRefGoogle Scholar
  19. Rambaut, A. (2014). FigTree: Tree Figure Drawing Tool v. 1.4.2. Institute of Evolutionary Biology, University of Edinburgh,
  20. Scott, D. T., & Duszynski, D. W. (1997). Eimeria from bats of the world: Two new species from Myotis spp. (Chiroptera: Vespertilionidae). Journal of Parasitology, 83, 495–501.CrossRefGoogle Scholar
  21. Seville, R. S., & Gruver, J. (2004). Species of Eimeria (Apicomplexa: Eimeriidae) from Bats (Chiroptera: Vespertilionidae) in central Wyoming. Journal of Parasitology, 90, 348–351.CrossRefGoogle Scholar
  22. Wheat, B. E. (1975). Eimeria macyi sp. n. (Protozoa: Eimeriidae) from the eastern pipistrelle, Pipistrellus subflavus, from Alabama. Journal of Parasitology, 61, 920–922.CrossRefGoogle Scholar
  23. Zhao, X., & Duszynski, D. W. (2001a). Phylogenetic relationships among rodent Eimeria species determined by plastid ORF470 and nuclear 18S rDNA sequences. International Journal for Parasitology, 31, 715–719.CrossRefGoogle Scholar
  24. Zhao, X., & Duszynski, D. W. (2001b). Molecular phylogenies suggest the oocyst residuum can be used to distinguish two independent lineages of Eimeria spp. in rodents. Parasitology Research, 87, 638–643.CrossRefGoogle Scholar
  25. Zhao, X., Duszynski, D. W., & Loker, E. S. (2001). Phylogenetic position of Eimeria antrozoi, a bat coccidium (Apicomplexa: Eimeriidae) and its relationship to morphologically similar Eimeria spp. from bats and rodents based on nuclear 18S and plasmid 23S rDNA sequences. Journal of Parasitology, 87, 1120–1123.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Thomas P. Miles
    • 1
  • Scott A. Rush
    • 2
  • Thomas G. Rosser
    • 1
    Email author
  1. 1.Department of Basic Sciences, College of Veterinary MedicineMississippi State UniversityMississippi StateUSA
  2. 2.Department of Wildlife, Fisheries, and Aquaculture, College of Forest ResourcesMississippi State UniversityMississippi StateUSA

Personalised recommendations