Systematic Parasitology

, Volume 96, Issue 1, pp 15–22 | Cite as

Nephrocystidium pickii Weissenberg, 1921 belongs to Myxozoa (Cnidaria) but is not conspecific with Myxidium lieberkuehni Bütschli, 1882 (Myxozoa: Bivalvulida: Variisporina: Myxidiidae): molecular-genetic evidence

  • Sergey Sokolov
  • Ekaterina Volkova
  • Alexander Kudryavtsev
  • Aleksey ParshukovEmail author


We isolated and re-investigated Nephrocystidium pickii Weißenberg, 1921 (Myxozoa: Bivalvulida: Variisporina) using light microscopy and phylogenetic analysis of the small-subunit (SSU) ribosomal RNA gene. This species is a parasite of the northern pike Esox lucius L. (Actinopterygii: Esocidae) which localizes in the endothelial cells of the glomerular capillary. The results of the phylogenetic analysis including this species clarify its taxonomic status and show that although it is the closest relative to Myxidium lieberkuehni Bütschli, 1882, the two organisms are not conspecific, contrary to the earlier hypotheses. The data obtained highlight the necessity of a profound taxonomic revision of the Myxozoa and the need to clarify species affiliation of extrasporogonic developmental stages of these organisms that occur in different organs of fish.



The study utilized the equipment of the Core Facility Centres “Development of Molecular and Cell Technologies”, “Culture Collection of Microorganisms” of the St. Petersburg State University Research Park, and “Karelian Research Centre of the Russian Academy of Sciences”. The authors wish to thank S. A. Murzina (IB KarRC RAS, Petrozavodsk) for help in making histology sections.


This research was performed with the financial support of the “Bioresources” programme of the Russian Academy of Sciences and within the framework of the budgetary themes №№ 0221-2017-0042 and AAAA-A17-117030310322-3.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional, national and international guidelines for the care and use of animals were followed.


  1. Bartošová, P., Freeman, M., Yokoyama, H., Caffara, M., & Fiala, I. (2011). Phylogenetic position of Sphaerospora testicularis and Latyspora scomberomori n. gen. n. sp. (Myxozoa) within the marine urinary clade. Parasitology, 138, 381–393.CrossRefGoogle Scholar
  2. Carriero, M. M., Adriano, E. A., Silva, M. R. M., Ceccarelli, P. S., & Maia, A. A. M. (2013). Molecular phylogeny of the Myxobolus and Henneguya genera with several new South American species. PLoS One, 8, e73713.CrossRefGoogle Scholar
  3. Debaisieux, P. (1919). Hypertrophie des cellules animales parasitees par des Cnidosporidies. Comptes Rendus Hebdomadaires des Séances et Mémoires de la Société de Biologie, 82, 867–869.Google Scholar
  4. Debaisieux, P. (1920). Notes sur le Myxidium lieberkuehni Bütschl. La Cellule, 30, 281–290.Google Scholar
  5. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.CrossRefGoogle Scholar
  6. Eszterbauer, E. (2004). Genetic relationship among gill-infecting Myxobolus species (Myxosporea) of cyprinids: molecular evidence of importance of tissue-specificity. Diseases of Aquatic Organisms, 58, 35–40.CrossRefGoogle Scholar
  7. Feist, S. (1997). Pathogenicity of renal myxosporeans of fish. Bulletin of the European Association of Fish Pathologists, 17, 209–214.Google Scholar
  8. Ferguson, J. A., Atkinson, S. D., Whipps, C. M., & Kent, M. L. (2008). Molecular and morphological analysis of Myxobolus spp. of salmonid fishes with the description of a new Myxobolus species. Journal of Parasitology, 94, 1322–1334.CrossRefGoogle Scholar
  9. Fiala, I. (2006). The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis. International Journal for Parasitology, 36, 1521–1534.CrossRefGoogle Scholar
  10. Fiala, I., & Dyková, I. (2004). The phylogeny of marine and freshwater species of the genus Chloromyxum Mingazzini, 1890 (Myxosporea: Bivalvulida) based on small subunit ribosomal RNA gene sequences. Folia Parasitologica, 51, 211–214.CrossRefGoogle Scholar
  11. Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221–224.CrossRefGoogle Scholar
  12. Grabner, D., & El-Matbouli, M. (2008). Transmission of Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) to Fredericella sultana (Bryozoa: Phylactolaemata) by various fish species. Diseases of Aquatic Organisms, 79, 133–139.CrossRefGoogle Scholar
  13. Holzer, A. S., Bartošová-Sojková, P., Born-Torrijos, A., Lövy, A., Hartigan, A., & Fiala, I. (2018). The joint evolution of the Myxozoa and their alternate hosts: A cnidarian recipe for success and vast biodiversity. Molecular Ecology, 27, 1651–1666.CrossRefGoogle Scholar
  14. Holzer, A. S., Bartošová, P., Pecková, H., Tyml, T., Atkinson, S., Bartholomew, J., Sipos, D., Eszterbauer, E., & Dyková, I. (2013). ‘Who’s who’ in renal sphaerosporids (Bivalvulida: Myxozoa) from common carp, Prussian carp and goldfish - molecular identification of cryptic species, blood stages and new members of Sphaerospora sensu stricto. Parasitology, 140, 46–60.CrossRefGoogle Scholar
  15. Holzer, A. S., Sommerville, C., & Wootten, R. (2004). Molecular relationships and phylogeny in a community of myxosporeans and actinosporeans based on their 18S rDNA sequences. International Journal for Parasitology, 34, 1099–1111.CrossRefGoogle Scholar
  16. Jones, S., Prosperi-Porta, G., Dawe, S., Blackbourn, J., Taylor, K., Lowe, G., & Osborn, A. (2004). Proliferative renal myxosporidiosis in spawning coho salmon (Oncorhynchus kisutch) in British Columbia and Washington. Folia Parasitologica, 51, 221–227.CrossRefGoogle Scholar
  17. Jírovec, O. (1940). Contribution to the knowledge of the parasites of our pikes. Časopis Národního Musea, 114, 1–12 (In Czech).Google Scholar
  18. Jirků, M., Bartošová, P., Kodádková, A., & Mutschmann, F. (2011). Another chloromyxid lineage: molecular phylogeny and redescription of Chloromyxum careni from the Asian Horned frog Megophrys nasuta. Journal of Eukaryotic Microbiology, 58, 50–59.CrossRefGoogle Scholar
  19. Kudryavtsev, A., Pawlowski, J., & Hausmann, K. (2009). Description and phylogenetic relationships of Spumochlamys perforata n. sp. and Spumochlamys bryora n. sp. (Amoebozoa, Arcellinida). Journal of Eukaryotic Microbiology, 56, 495–503.CrossRefGoogle Scholar
  20. Kudryavtsev, A., Pawlowski, J., & Hausmann, K. (2011). Description of Paramoeba atlantica n. sp. (Amoebozoa, Dactylopodida)—a marine amoeba from the Eastern Atlantic, with emendation of the dactylopodid families. Acta Protozoologica, 50, 239–253.Google Scholar
  21. Konovalov, S. M. (1967). On certain peculiarities of parasites fauna of pike from the Penzhina river. Parazitologiya, 1, 539–546 (In Russian).Google Scholar
  22. Lom, J., Dyková, I., & Feist, S. (1989). Myxosporea-induced xenoma formation in pike (Esox lucius L.) renal corpuscles associated with Myxidium lieberkuehni infection. European Journal of Protistology, 24, 271–280.CrossRefGoogle Scholar
  23. Maniatis, T., Fritsch, E. F., & Sambrook, J. (1982). Molecular cloning, a laboratory manual. New York: Cold Spring Harbor Laboratory, 545 pp.Google Scholar
  24. Medlin, L., Elwood, H. J., Stickel, S., & Sogin, M. L. (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene, 71, 491–499.CrossRefGoogle Scholar
  25. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Anonym (Ed), Proceedings of the Gateway Computing Environments Workshop (GCE). Piscataway: IEEE Press New Orleans, pp. 1–8.Google Scholar
  26. Molnár, K. (1994). Comments on the host, organ and tissue specificity of fish myxozoans and on the types of their intrapiscine development. Parasitologia Hungarica, 27, 5–20.Google Scholar
  27. Molnár, K. (2007). Site preference of myxozoans in the kidneys of Hungarian fishes. Diseases of Aquatic Organisms, 78, 45–53.CrossRefGoogle Scholar
  28. Moshu, A., & Trombitsky, I. (2007). Two new cnidosporeans species (Cnidospora: Sphaerosporidae, Myxobolidae), parasites of the European parasites of the European mudminnow (Umbra krameri) from lower Dniester river. Journal of Academy of Sciences of Moldova, Life Sciences, 2, 78–86.Google Scholar
  29. Nesnidal, M., Heimkampf, M., Bruchhaus, I., El-Matbouli, M., & Hausdorf, B. (2013). Agent of whirling disease meets orphan worm: Phylogenomic analyses firmly place Myxozoa in Cnidaria. PLoS One, 8, 1–6.CrossRefGoogle Scholar
  30. Okamura, B., Gruhl, A., & Bartholomew, J. L. (Eds.). (2015). Myxozoan evolution. Ecology and development. New York and London: Springer International Publishing, 441 pp.Google Scholar
  31. Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer v1.6.
  32. Rocha, S., Casal, G., Garcia, P., Matos, E., Al-Quraishy, S., & Azevedo, C. (2014). Ultrastructure and phylogeny of the parasite Henneguya carolina sp. nov. (Myxozoa), from the marine fish Trachinotus carolinus in Brazil. Diseases of Aquatic Organisms, 112, 139–148.CrossRefGoogle Scholar
  33. Rocha, S., Casal, G., Rangel, L., Severino, R., Castro, R., Azevedo, C., & Santos, M. J. (2013). Ultrastructural and phylogenetic description of Zschokkella auratis sp. nov. (Myxozoa), a parasite of the gilthead seabream Sparus aurata. Diseases of Aquatic Organisms, 107, 19–30.CrossRefGoogle Scholar
  34. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefGoogle Scholar
  35. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.CrossRefGoogle Scholar
  36. Weißenberg, R. (1922). Uber einen myxosporidienartigen intracellulären Glomerulusparasiten der Hechtniere. Zoologischer Anzeiger, 55, 66–74.Google Scholar
  37. Weißenberg, R. (1923). Weitere Studien über intrazellulären Parasitismus. Ein myxosporidienartiger Organismus als echter Zellparasit der Malpighischen Körperchen der Hechtniere. Archiv für Mikroskopische Anatomie, 97, 431–485.CrossRefGoogle Scholar
  38. Zatti, S. A., Atkinson, S. D., Maia, A. A. M., Bartholomew, J. L., & Adriano, E. A. (2018). Novel Henneguya spp. (Cnidaria: Myxozoa) from cichlid fish in the Amazon basin cluster by geographic origin. Parasitology Research, 117, 849–859.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Biology of the Karelian Research Centre of the Russian Academy of SciencesPetrozavodskRussia
  3. 3.Department of Invertebrate Zoology, Faculty of BiologySt. Petersburg State UniversitySt. PetersburgRussia
  4. 4.Core Facility Centre “Culture Collection of Microorganisms”, St. Petersburg State University Research ParkSt. PetersburgRussia
  5. 5.Laboratory of Parasitic Worms and Protistology, Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations