Advertisement

Systematic Parasitology

, Volume 95, Issue 4, pp 367–371 | Cite as

Phylogenetic evidence for an ancestral coevolution between a major clade of coccidian parasites and elasmobranch hosts

  • Raquel Xavier
  • Joana L. Santos
  • Ana Veríssimo
Article

Abstract

Cartilaginous fishes are the oldest jawed vertebrates and are also reported to be the hosts of some of the most basal lineages of Cestoda and Aporocotylidae (Digenea) parasites. Recently a phylogenetic analysis of the coccidia (Apicomplexa) infecting marine vertebrates revealed that the lesser spotted dogfish harbours parasite lineages basal to Eimeria Schneider, 1875 and the group formed by Schellackia Reichenow, 1919, Lankesterella Ames, 1923, Caryospora Leger, 1904 and Isospora Schneider, 1881. In the present study we have found additional lineages of coccidian parasites infecting the cownose ray Rhinoptera bonasus Mitchill and the blue shark Prionace glauca Linnaeus. These lineages were also found as basal to species from the genera Lankesterella, Schellackia, Caryospora and Isospora infecting higher vertebrates. These results confirm previous phylogenetic assessments and suggest that these parasitic lineages first evolved in basal vertebrate hosts (i.e. Chondrichthyes), and that the more derived lineages infect higher vertebrates (e.g. birds and mammals) conforming to the evolution of their hosts. We hypothesise that elasmobranchs might host further ancestral parasite lineages harbouring unknown links of parasite evolution.

Notes

Acknowledgements

The authors would like to thanks David J. Harris for useful comments on the manuscript, and Jan R. McDowell for sharing cownose ray tissue samples.

Funding

This work was funded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and by National Funds through FCT - Foundation for Science and Technology under the project PTDC/MAR-BIO/0902/2014, PTDC/MAR-BIO/4458/2012 and POCI-01-0145-FEDER-016550, and partially funded by the Norte Portugal Regional Operational Programme (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement under project MarInfo. RX and AV are supported by FCT under the Programa Operacional Potencial Humano - Quadro de Referência Estratégico Nacional from the European Social Fund and Portuguese Ministério da Educação e Ciência (RX: IF/00359/2015; AV post-doctoral Grant SFRH/BPD/77487/2011).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional, national and international guidelines for the care and use of animals were followed.

References

  1. Belli, S. I., Smith, N. C., & Ferguson, D. J. P. (2006). The coccidian oocyst: A tough nut to crack! Trends of Parasitology, 22, 416–423.CrossRefGoogle Scholar
  2. Caira, J. N., & Jensen, K. (Eds) (2017). Planetary biodiversity inventory (20082017): Tapeworms from vertebrate bowels of the earth. Special Publication No. 25. Lawrence, Kansas, USA: University of Kansas Natural History Museum, 463 pp.Google Scholar
  3. Chapman, P. A., Owen, H., Flint, M., Traub, R. J., Cribb, T. H., & Mills, P. C. (2016). Molecular Characterization of coccidia associated with an epizootic in green sea turtles (Chelonia mydas) in South East Queensland, Australia. PLoS ONE, 11, e0149962.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cribb, T. H., Chick, R. C., O’Connor, W., O’Connor, S., Johnson, D., Sewell, K. B., et al. (2017). Evidence that blood flukes (Trematoda: Aporocotylidae) of chondrichthyans infect bivalves as intermediate hosts: indications of an ancient diversification of the Schistosomatoidea. International Journal for Parasitology, 47, 885–891.CrossRefPubMedGoogle Scholar
  5. Dentzien-Dias, P. C., Poinar, G. J., De Figueiredo, A. E. Q., Pacheco, A. C. L., Horn, B. L., & Schultz, C. L. (2013). Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS ONE, 8, e55007.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Lanfear, R., Calcott, B., Ho, S. Y. W., & Guindon, S. (2012). PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.CrossRefPubMedGoogle Scholar
  9. Leung, T. L. F. (2017). Fossils of parasites: What can the fossil record tell us about the evolution of parasitism? Biological Reviews, 92, 410–430.CrossRefPubMedGoogle Scholar
  10. Megía-Palma, R., Martínez, J., Nasri, I., Cuervo, J. J., Martín, J., Acevedo, I., et al. (2016). Phylogenetic relationships of Isospora, Lankesterella, and Caryospora species (Apicomplexa: Eimeriidae) infecting lizards. Organisams Diversity & Evolution, 16, 275–288.CrossRefGoogle Scholar
  11. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, pp. 1–8.Google Scholar
  12. Molnár, K., Ostoros, G., Dunams-Morel, D., & Rosenthal, B. (2012). Eimeria that infect fish are diverse and are related to, but distinct from, those that infect terrestrial vertebrates. Infection, Genetics and Evolution, 12, 1810–1815.CrossRefPubMedGoogle Scholar
  13. Ogedengbe, M. E., Qvarnstrom, Y., da Silva, A. J., Arrowood, M. J., & Barta, J. R. (2015). A linear mitochondrial genome of Cyclospora cayetanensis (Eimeriidae, Eucoccidiorida, Coccidiasina, Apicomplexa) suggests the ancestral start position within mitochondrial genomes of eimeriid coccidia. International Journal for Parasitology, 45, 361–365.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Olson, P. D., Caira, J. N., Jensen, K., Overstreet, R. M., Palm, H. W., & Beveridge, I. (2010). Evolution of the trypanorhynch tapeworms: Parasite phylogeny supports independent lineages of sharks and rays. International Journal for Parasitology, 40, 223–242.CrossRefPubMedGoogle Scholar
  15. Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer edn.
  16. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Rosenthal, B. M., Dunams-Morela, D., Ostoros, G., & Molnár, K. (2016). Coccidian parasites of fish encompass profound phylogenetic diversity and gave rise to each of the major parasitic groups in terrestrial vertebrates. Infection Genetics and Evolution, 40, 219–227.CrossRefGoogle Scholar
  18. Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Tenter, A. M., Barta, J. R., Beveridge, I., Duszynski, D. W., Mehlhorn, H., Morrison, D. A., et al. (2002). The conceptual basis for a new classification of the coccidia. International Journal for Parasitology, 32, 595–616.CrossRefPubMedGoogle Scholar
  20. Ujvari, B., Madsen, T., & Olsson, M. (2004). High prevalence of Hepatozoon spp. (Apicomplexa, Hepatozoidae) infection in water pythons (Liasis fuscus) from tropical Australia. Journal of Parasitology, 90, 670–672.CrossRefPubMedGoogle Scholar
  21. Xavier, R., Severino, R., Perez-Losada, M., Gestal, C., Freitas, R., Harris, D. J., et al. (2018). Phylogenetic analysis of apicomplexan parasites infecting commercially valuable species from the Northeast Atlantic reveals high levels of diversity and insights into the evolution of the group. Parasites & Vectors, 11, 63.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.CIBIO/INBIO, Universidade do PortoVairãoPortugal
  2. 2.College of William and MaryVirginia Institute of Marine ScienceGloucester PointUSA

Personalised recommendations