Systematic Parasitology

, Volume 94, Issue 7, pp 819–829 | Cite as

Morphological and molecular characterisation of Aporocotyle margolisi Smith, 1967 (Digenea: Aporocotylidae) from the North Pacific hake Merluccius productus (Ayres) (Gadiformes: Merlucciidae) off Oregon, USA

  • Jesus S. Hernández-Orts
  • David I. Hernández-Mena
  • Gema Alama-Bermejo
  • Roman Kuchta
  • Kym C. Jacobson
Part of the following topical collections:
  1. Digenea


Aporocotylid blood flukes conspecific with Aporocotyle margolisi Smith, 1967 were collected from the bulbus arteriosus of the North Pacific hake Merluccius productus (Ayres). This study revisits the morphology of A. margolisi, including drawings, measurements and scanning electron microscopy images, and provides for the first time molecular data for the large subunit of the ribosomal RNA (28S rDNA) and the mitochondrial cytochrome c oxidase subunit 1 (cox1) genes for this species. A 28S rDNA phylogenetic study of A. margolisi, and all available Aporocotyle spp., was also performed. The distribution range of A. margolisi is extended to the Pacific coast of the USA. We provide a morphological comparison of Aporocotyle spp. from the Pacific coast in North America as well as other Aporocotyle spp. infecting hake. Comparisons with the original description revealed that the new specimens of A. margolisi were considerably larger with respect to all morphological features, except for shorter spines. Molecular results showed a close relationship between A. margolisi and A. argentinensis Smith, 1969 from the Argentine hake Merluccius hubbsi Marini. The phylogenetic relationships of Aporocotyle spp. point to a possible co-speciation of hakes species and these blood fluke parasites.



We are grateful to Heather Munro Mann (Midwater Trawlers Cooperative, Newport, Oregon) for providing the fish analysed in this study. We also thank Alejandro Oceguera for his assistance with the molecular analyses. Institutional support was given to D.I.H.-M. by the Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México.


This study was supported by the Czech Science Foundation (projects ECIP P505/12/G112 and GP14-28784P), the Institute of Parasitology, Biology Centre of the Czech Academy of Sciences (grant number RVO: 60077344) and the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT)-UNAM (project IA202016). D.I.H.-M. benefits from a PhD student grant from the Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, and from the National Council on Science and Technology (CONACyT) of the Mexican Government (scholarship number 245193).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional, national and international guidelines for the care and use of animals were followed.

Supplementary material

11230_2017_9740_MOESM1_ESM.pdf (69 kb)
Supplementary material 1 (PDF 69 kb)


  1. Bullard, S. A., Jensen, K., & Overstreet, R. M. (2009). Historical account of the two family-group names in use for the single accepted family comprising the “fish blood flukes”. Acta Parasitologica, 54, 78–84.CrossRefGoogle Scholar
  2. Campo, D., Machado-Schiaffino, G., Horreo, J. L., & Garcia-Vazquez, E. (2009). Molecular organization and evolution of 5S rDNA in the genus Merluccius and their phylogenetic implications. Journal of Molecular Evolution, 68, 208–216.CrossRefPubMedGoogle Scholar
  3. Campo, D., Machado-Schiaffino, G., Perez, J., & Garcia-Vazquez, E. (2007). Phylogeny of the genus Merluccius based on mitochondrial and nuclear genes. Gene, 30, 171–179.CrossRefGoogle Scholar
  4. Cifuentes Riquelme, M. (2015). Filogenia de Aporocotyle spp. (Digenea) en sus hospedadores del género Merluccius y Genypterus, en Chile. Bachelor’s Thesis, Valdivia, Universidad Austral de Chile, 40 pp.Google Scholar
  5. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fernández, J., & Durán, L. (1985). Aporocotyle australis n. sp. (Digenea: Sanguinicolidae), parásito de Merluccius australis (Hutton 1872) en Chile y su relación con la filogenia de Aporocotyle Odhner, 1900 en Merluccius spp. Revista Chilena de Historia Natural, 58, 121–126.Google Scholar
  7. García-Varela, M., & Nadler, S. A. (2005). Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rDNA gene sequences. Journal of Parasitology, 91, 1401–1409.CrossRefPubMedGoogle Scholar
  8. Hernández-Orts, J. S., Alama-Bermejo, G., Carrillo, J. M., García, N. A., Crespo, E. A., Raga, J. A., et al. (2012). Aporocotyle mariachristinae n. sp., and A. ymakara Villalba & Fernández, 1986 (Digenea: Aporocotylidae) of the pink cusk-eel, Genypterus blacodes (Ophidiiformes: Ophidiidae) from Patagonia, Argentina. Parasite, 19, 319–330.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Holmes, J. C. (1971). Two new sanguinicolid blood flukes (Digenea) from scorpaenid rockfishes (Perciformes) of the Pacific coast of North America. Journal of Parasitology, 57, 209–216.CrossRefGoogle Scholar
  10. Moszczynska, A., Locke, S. A., McLaughlin, J. D., Marcogliese, D. J., & Crease, T. J. (2009). Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Molecular Ecology Resources, 9, 75–82.CrossRefPubMedGoogle Scholar
  11. Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A., & Littlewood, D. T. J. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology, 33, 733–755.CrossRefPubMedGoogle Scholar
  12. Orélis-Ribeiro, R., Arias, C. R., Halanych, K. M., Cribb, T. H., & Bullard, S. A. (2014). Diversity and ancestry of flatworms infecting blood of nontetrapod craniates “fishes”. Advances in Parasitology, 85, 1–64.CrossRefPubMedGoogle Scholar
  13. Quinteiro, J., Vidal, R., & Rey-Méndez, M. (2000). Phylogeny and biogeographic history of hake (genus Merluccius), inferred from mitochondrial DNA control-region sequences. Marine Biology, 136, 163–174.CrossRefGoogle Scholar
  14. Repullés-Albelda, A., Montero, F. E., Holzer, A. S., Ogawa, K., Hutson, K. S., & Raga, J. A. (2008). Speciation of the Paradeontacylix spp. (Sanguinicolidae) of Seriola dumerili. Two new species of the genus Paradeontacylix from the Mediterranean. Parasitology International, 57, 405–414.CrossRefPubMedGoogle Scholar
  15. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Santoro, M., Cipriani, P., Pankov, P., & Lawton, S. P. (2015). Aporocotyle michaudi n. sp. (Digenea: Aporocotylidae) from the emerald rock cod, Trematomus bernacchii (Teleostei: Perciformes) in Antarctica. Parasitology International, 64, 324–329.CrossRefPubMedGoogle Scholar
  17. Smith, J. W. (1967). Aporocotyle margolisi n. sp. (Digenea: Aporocotylidae) from Merluccius productus. Journal of the Fisheries Research Board of Canada, 24, 1763–1773.CrossRefGoogle Scholar
  18. Smith, J. W. (1969). On Aporocotyle argentinensis n. sp. (Digenea: Sanguinicolidae) from Merluccius hubbsi, and the phylogeny of Aporocotyle Odhner, 1900 in hake. Journal of Helminthology, 43, 371–382.CrossRefGoogle Scholar
  19. Smith, J. W. (2002). Family Sanguinicolidae von Graff, 1907. In: Gibson, D. I., Jones, A. & Bray, R. A. (Eds), Keys to the Trematoda, Volume 1. Wallingford: CABI Publishing and the Natural History Museum, pp. 433–452.Google Scholar
  20. Snyder, S. D., & Loker, E. S. (2000). Evolutionary relationships among the Schistosomatidae (Platyhelminthes: Digenea) and an Asian origin for Schistosoma. Journal of Parasitology, 86, 283–288.CrossRefPubMedGoogle Scholar
  21. Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.CrossRefPubMedGoogle Scholar
  22. Stock, S. P., Campbell, J. F., & Nadler, S. A. (2001). Phylogeny of Steinernema travassos, 1927 (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characters. Journal of Parasitology, 87, 877–889.CrossRefPubMedGoogle Scholar
  23. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 15, 4876–4882.CrossRefGoogle Scholar
  25. Villalba, C., & Fernández, J. (1986a). Dos nuevas especies de trematodos parásitos de peces marinos en Chile. Parasitología al Día, 10, 45–51.Google Scholar
  26. Villalba, C., & Fernández, J. (1986b). Tres nuevas especies de Aporocotyle Odhner, 1900 (Digenea: Sanguinicolidae) parasitas de Genypterus spp. en Chile (Pisces: Ophidiidae). Revista de Biología Marina, Valparaíso, 22, 125–139.Google Scholar
  27. Williams, H. H. (1958). The anatomy of Aporocotyle spinosicanalis sp. nov. (Trematoda: Digenea) from Merluccius merluccius (L.). Annals and Magazine of Natural History Series, 13, 291–297.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Jesus S. Hernández-Orts
    • 1
  • David I. Hernández-Mena
    • 2
    • 3
  • Gema Alama-Bermejo
    • 1
    • 4
    • 5
  • Roman Kuchta
    • 4
  • Kym C. Jacobson
    • 6
  1. 1.Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni (CIMAS – CCT CONICET – CENPAT) y Escuela Superior de Ciencias Marinas (ESCiMar)Universidad Nacional del ComahueSan Antonio OesteArgentina
  2. 2.Laboratorio de Helmintología, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  4. 4.Institute of ParasitologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
  5. 5.Department of MicrobiologyOregon State UniversityCorvallisUSA
  6. 6.Newport Research Station, Northwest Fisheries Science CenterNational Marine Fisheries ServiceNewportUSA

Personalised recommendations