Systematic Parasitology

, Volume 94, Issue 1, pp 65–72 | Cite as

A new species of Hepatozoon Miller, 1908 (Apicomplexa: Adelerina) from the snake Philodryas nattereri Steindachner (Squamata: Dipsadidae) in northeastern Brazil

  • Diva M. Borges-Nojosa
  • M. Juliana Borges-Leite
  • João P. Maia
  • Djan Zanchi-Silva
  • Roberta da Rocha Braga
  • D. James Harris


Based on both unique morphological characteristics of the gamont, distinct changes caused to the host erythrocyte and analysis of partial 18S rRNA gene sequences, a new parasite of the genus Hepatozoon Miller, 1908 is described from the snake Philodryas nattereri Steindachner (Squamata: Dipsadidae) in northeastern Brazil. The new species, Hepatozoon musa n. sp., is characterized by large and curved mature gamonts (18.9 ± 0.9 μm in length and 3.8 ± 0.3 μm in width) that considerably engorge infected host erythrocytes and displace the nucleus laterally, which become longer and thinner. Phylogenetic estimates indicate the new species is more closely related to the recently described Hepatozoon cuestensis O’Dwyer, Moço, Paduan, Spenassatto, Silva & Ribolla, 2013, from Brazilian rattlesnakes. These recent findings highlight the need for further studies of Hepatozoon to better determine the biodiversity of this common but poorly-studied parasite group.


Infected Erythrocyte Phylogenetic Estimate Uninfected Erythrocyte Successful Polymerase Chain Reaction Beckman Coulter Genomic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by CNPq to Project “Pesquisador Visitante Estrangeiro” (PVE-Process No.401800/2013-1). DMBNojosa was supported by CNPq “Pesquisador Produtividade” (PQ-Process No. 309617/20120). DJH was funded through an IF-FCT contract (IF/01627/2014) under the “Programa Operacional Potencial Humano – Quadro de Referência Estratégico Nacional” funds from the European Social Fund and the Portuguese Ministério da Educação e Ciência.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional, national and international guidelines for the care and use of animals were followed.


  1. Abramoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ. Biophotonics International, 11, 36–42.Google Scholar
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.CrossRefPubMedGoogle Scholar
  3. Barta, J. R., Ogedengbe, J. D., Martin, D. S., & Smith, T. G. (2012). Phylogenetic position of the adeleorinid coccidia (Myzozoa, Apicomplexa, Coccidia, Eucoccidiorida, Adeleorina) inferred using 18S rDNA sequences. Journal of Eukaryotic Microbiology, 59, 171–180.CrossRefPubMedGoogle Scholar
  4. Carini, A. (1910). Sobre uma hemogregarina de Philodryas schottii. Revista de Medicina (São Paulo), 23, 339–340.Google Scholar
  5. França, F. G. R., Mesquita, D. O., Nogueira, C. C., & Araújo, A. F. B. (2008). Phylogeny and Ecology Determine Morphological Structure in a Snake Assemblage in the Central Brazilian Cerrado. Copeia, 1, 23–28.CrossRefGoogle Scholar
  6. Freitas, M. A. (2014). Squamate reptiles of the Atlantic Forest of northern Bahia, Brazil. Check List, 10, 1020–1030.CrossRefGoogle Scholar
  7. Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate Maximum-Likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.CrossRefPubMedGoogle Scholar
  8. Haklová-Kočíková, B., Hižňanová, A., Majláth, I., Račka, K., Harris, D. J., Földvári, G., et al. (2014). Morphological and molecular characterization of Karyolysus - a neglected but common parasite infecting some European lizards. Parasites & Vectors, 7, 555.Google Scholar
  9. Hamdan, B., & Lira-da-Silva, R. M. (2012). The snakes of Bahia State, northeastern Brazil: species richness, composition and biogeographical notes. Salamandra, 48, 31–50.Google Scholar
  10. Harris, D. J., Borges-Nojosa, D. M., & Maia, J. P. (2015). Prevalence and diversity of Hepatozoon in native and exotic geckos from Brazil. Journal of Parasitology, 101, 80–85.CrossRefPubMedGoogle Scholar
  11. Harris, D. J., Graciá, E., Jorge, F., Maia, J. P. M. C., Perera, A., Carretero, M. A., & Giménez, A. (2013). Molecular detection of Hemolivia (Apicomplexa: Haemogregarinidae) from ticks of North African Testudo graeca (Testudines: Testudinidae) and an estimation of their phylogenetic relationships using 18S rRNA sequences. Comparative Parasitology, 80, 292–296.CrossRefGoogle Scholar
  12. Harris, D. J., Maia, J. P. M. C., & Perera, A. (2011). Molecular characterization of Hepatozoon species in reptiles from the Seychelles. Journal of Parasitology, 97, 106–110.CrossRefPubMedGoogle Scholar
  13. Herbert, J. D. K., Godfrey, S. S., Bull, C. M., & Menz, R. I. (2010). Developmental stages and molecular phylogeny of Hepatozoon tuatarae, a parasite infecting the New Zealand tuatara, Sphenodon punctatus and the tick, Amblyomma sphenodonti. International Journal for Parasitology, 40, 1311–1315.CrossRefPubMedGoogle Scholar
  14. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.CrossRefPubMedGoogle Scholar
  15. Karadjian, G., Chavatte, J.-M., & Landau, I. (2015). Systematic revision of the adeleid haemogregarines, with creation of Bartazoon n. g., reassignment of Hepatozoon argantis Garnham, 1954 to Hemolivia, and molecular data on Hemolivia stellata. Parasite, 22, 31.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Maia, J. P., Harris, D. J., Carranza, S., & Goméz-Díaz, E. (2016). Assessing the diversity, host-specificity and infection patterns of apicomplexan parasites in reptiles from Oman, Arabia. Parasitology. doi: 10.1017/S0031182016001372.
  17. Maia, J. P. M. C., Perera, A., & Harris, D. J. (2012). Molecular survey and microscopic examination of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina) in lacertid lizards from the western Mediterranean. Folia Parasitologica, 59, 241–248.CrossRefPubMedGoogle Scholar
  18. Moço, T. C., da Silva, R. J., Madeira, N. G., Dos Santos Paduan, K., Rubini, A. S., Leal, D. D. M., & O’Dwyer, L. H. (2012). Morphological, morphometric, and molecular characterization of Hepatozoon spp. (Apicomplexa, Hepatozoidae) from naturally infected Caudisona durissa terrifica (Serpentes, Viperidae). Parasitology Research, 110, 1393–1401.CrossRefPubMedGoogle Scholar
  19. Morato, S. A. A., Lima, A. M. X., Staut, D. C. P., Faria, R. G., Souza-Alves, J. P., Gouveia, S. F., et al. (2011). Amphibians and reptiles of the Refúgio de Vida Silvestre Mata do Junco, municipality of Capela, state of Sergipe, northeastern Brazil. Check List, 7, 756–762.CrossRefGoogle Scholar
  20. Morrison, D. A. (2009). Evolution of the Apicomplexa: Where are we now? Trends in Parasitology, 25, 375–382.CrossRefPubMedGoogle Scholar
  21. O’Dwyer, L. H., Moço, T. C., Paduan, K. D. S., Spenassatto, C., da Silva, R. J., & Ribolla, P. E. M. (2013). Description of three new species of Hepatozoon (Apicomplexa, Hepatozoidae) from Rattlesnakes (Crotalus durissus terrificus) based on molecular, morphometric and morphologic characters. Experimental Parasitology, 135, 200–207.CrossRefPubMedGoogle Scholar
  22. Perkins, S. L., & Keller, A. K. (2001). Phylogeny of nuclear small subunit rRNA genes of hemogregarines amplified with specific primers. Journal of Parasitology, 87, 870–876.CrossRefPubMedGoogle Scholar
  23. Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25, 1253–1256.CrossRefPubMedGoogle Scholar
  24. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Telford, S. R. (2009). Hemoparasites of the Reptilia (p. 394). Boca Raton, Florida: CRC Press, Taylor and Francis.Google Scholar
  26. Tomé, B., Maia, J. P., Salvi, D., Brito, J. C., Carretero, M. A., Perera, A., et al. (2014). Patterns of genetic diversity in Hepatozoon spp. infecting snakes from North Africa and the Mediterranean Basin. Systematic Parasitology, 87, 249–258.CrossRefPubMedGoogle Scholar
  27. Tomé, B., Rato, C., Perera, A., & Harris, D. J. (2016). High diversity of Hepatozoon spp. in geckos of the genus Tarentola. Journal of Parasitology, 102, 476–480.CrossRefPubMedGoogle Scholar
  28. Uetz, P., & Hošek, J. (2015). The Reptile Database. Accessed 19 March 2016.
  29. Ujvari, B., Madsen, T., & Olsson, M. (2004). High prevalence of Hepatozoon spp. (Apicomplexa, Hepatozoidae) infection in water pythons (Liasis fuscus) from tropical Australia. Journal of Parasitology, 90, 670–672.CrossRefPubMedGoogle Scholar
  30. Vitt, L. J., Caldwell, J. P., Colli, G. R., Garda, A. A., Mesquita, D. O., França, F. G. R., & Balbino, S. F. (2002). Um guia fotográfico dos répteis e anfíbios da região do Jalapão no Cerrado brasileiro. Publications in Herpetology Sam Noble Oklahoma Museum of Natural History, Norman, Oklahoma, USA, 1, 1–17.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Diva M. Borges-Nojosa
    • 1
  • M. Juliana Borges-Leite
    • 1
  • João P. Maia
    • 2
  • Djan Zanchi-Silva
    • 1
  • Roberta da Rocha Braga
    • 1
  • D. James Harris
    • 2
    • 3
  1. 1.Núcleo Regional de Ofiologia da Universidade Federal do Ceará (NUROF-UFC)FortalezaBrazil
  2. 2.CIBIO Research Centre in Biodiversity and Genetic Resources, InBIOUniversidade do PortoVairão, Vila do CondePortugal
  3. 3.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations