Advertisement

Systematic Parasitology

, Volume 93, Issue 9, pp 863–876 | Cite as

A new species of microphallid (Trematoda: Digenea) infecting a novel host family, the Muraenidae, on the northern Great Barrier Reef, Australia

  • Olena Kudlai
  • Thomas H. Cribb
  • Scott C. Cutmore
Article

Abstract

A new species of microphallid, Longiductotrema tethepae n. sp., is reported from a muraenid eel Gymnothorax pseudothyrsoideus (Bleeker) on the northern Great Barrier Reef. The new species is described based on adults from Gy. pseudothyrsoideus and metacercariae from a grapsid crab, Grapsus albolineatus Latreille in Milbert, collected from off Lizard Island, Queensland, Australia. The new species is assigned to Longiductotrema Deblock & Heard, 1969 based on morphological characters (presence of a cirrus-sac; a long metraterm, intensively ensheathed by gland-cells; an entirely postcaecal uterus; vitellarium composed of two lateral clusters each of about ten follicles, situated in the testicular and post-testicular areas). Longiductotrema tethepae n. sp. is the third species assigned to the genus, differing from its congeners in having a distinctly larger body dimensions, a smaller pharynx in relation to oral sucker, the anterior limits of the vitelline fields at the level of the testes (vs at the level of the ovary) and in its parasitism of a muraenid fish (vs birds). Additionally, the new species differs from L. floridense Deblock & Heard, 1969 in having a shorter metraterm and from L. scandolensis Deblock & Bartoli, 1988 in having a less elongate forebody in relation to body length, shorter caeca and prepharynx, and slightly larger eggs. Phylogenetic analyses, based on partial 28S rRNA gene sequences, showed that the present species is sister to all other microphallids for which sequence data are available. This is the fourth report of a microphallid from a marine eel, the first from the Muraenidae Rafinesque and the first from a marine fish in the Indo-west Pacific. A summary of all species of the Microphallidae parasitising fish is provided.

Keywords

Ventral Sucker Oral Sucker Maximum Likelihood Analysis Bayesian Inference Analysis Intestinal Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Dr Nathan Bott, Storm Martin, Dan Huston and Russell Yong for their assistance in the collection of hosts and the staff of the Lizard Island Research Station (Australian Museum). The authors thank the Australian Biological Resources Study (ABRS) for their ongoing support to THC and SCC. This study was supported in part by the Czech Science Foundation (project ECIP P505/12/G112) to OK.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional, national and international guidelines for the care and use of animals were followed.

References

  1. Abdul-Salam, J., Sreelatha, B. S., & AI-Kandari, W. (1997). Temporal variations in the infection of a population of Clypeomorus bifasciata (Gastropoda: Prosobranchia) by a digenean microphallid larva in Kuwait Bay. Journal of Helminthology, 71, 1–7.CrossRefPubMedGoogle Scholar
  2. Al-Kandari, W. Y., Al-Bustan, S. A., & Alnaqeeb, M. (2011). Ribosomal DNA sequence characterization of Maritrema cf. eroliae Yamaguti, 1939 (Digenea: Microphallidae) and its life cycle. Journal of Parasitology, 97, 1067–1074.CrossRefPubMedGoogle Scholar
  3. Ankenbrand, M. J., Keller, A., Wolf, M., Schultz, J., & Förster, F. (2015). ITS2 Database V: Twice as much. Molecular Biology and Evolution, 32, 3030–3032.CrossRefPubMedGoogle Scholar
  4. Bray, R. A. (2008). Introduction and Key to Superfamilies. In Bray, R. A., Gibson, D. I. & Jones, A. (Eds.), Keys to the Trematoda, Volume 3. Wallingford: CAB International and The Natural History Museum, pp. 1–5.Google Scholar
  5. Bray, R. A., & Cribb, T. H. (2012). Reorganisation of the superfamily Lepocreadioidea Odhner, 1905 based on an inferred molecular phylogeny. Systematic Parasitology, 83, 169–177.CrossRefPubMedGoogle Scholar
  6. Bray, R. A., Cribb, T. H., Littlewood, D. T. J., & Waeschenbach, A. (2016). The molecular phylogeny of the digenean family Opecoelidae Ozaki, 1925 and the value of morphological characters, with the erection of a new subfamily. Folia Parasitologica, 63, 013.CrossRefGoogle Scholar
  7. Belopol’skaya, M. M. (1952). Family Microphallidae. Osnovy Trematodologii, 6, 619–756. (In Russian).Google Scholar
  8. Belopol’skaya, M. M. (1963). Family Microphallidae. Osnovy Trematodologii, 21, 260–502. (In Russian).Google Scholar
  9. Caveny, B. A., & Etges, F. (1971). Life history studies of Microphallus opacus (Trematoda: Microphallidae). Journal of Parasitology, 57, 1215–1221.CrossRefPubMedGoogle Scholar
  10. Cribb, T. H., Bray, R. A., Diaz, P. E., Huston, D. C., Kudlai, O., Martin, S., Yong, R. Q-Y., & Cutmore, S. C. (2016). Trematodes of fishes of the Indo-west Pacific: told and untold richness. Systematic Parasitology, 93, 237–247.CrossRefPubMedGoogle Scholar
  11. Cribb, T. H., & Bray, R. A. (2010). Gut wash, body soak, blender and heat-fixation: Approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology, 76, 1–7.CrossRefPubMedGoogle Scholar
  12. Cribb, T. H., Bray, R. A., & Cutmore, S. C. (2013). Peracreadium akenovae sp. nov. (Trematoda: Opecoelidae) parasitising the highfin moray eel Gymnothorax pseudothyrsoideus (Anguilliformes: Muraenidae) from Moreton Bay. Australia. Acta Parasitologica, 58, 324–327.PubMedGoogle Scholar
  13. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Deblock, S. (2008). Family Microphallidae Ward, 1901. In R. A. Bray, D. I. Gibson, & A. Jones (Eds.), Keys to the Trematoda, Volume 3. Wallingford: CAB International and The Natural History Museum, pp. 451–492.Google Scholar
  15. Deblock, S., & Bartoli, P. (1998). Contribution à l’étude des Microphallidae Travassos, 1920 (Trematoda). XL. Description de Longiductotrema scandolensis n. sp., parasite des goélands leucophées de Corse (France). Systematic Parasitology, 12, 199–210.CrossRefGoogle Scholar
  16. Deblock, S., & Heard, R. W. (1969). Contribution à l’étude des Microphallidae Travassos, 1920 (Trematoda). XIX. Description de Maritrema prosthometra n. sp. et de Longiductotrema nov. gen. parasites d’Oiseaux Ralliformes d’Amerique du Nord. Annales de Parasitologie Humaine et Comparée, 44, 415–424.PubMedGoogle Scholar
  17. Davie, P. (2011). Wild guide to Moreton Bay and adjacent coasts, Volume 2. Brisbane: Queensland Museum, 322 pp.Google Scholar
  18. Díaz, M., Gómez, E., Kashem, A., & Guillarte, D. V. (2015). Levinseniella (Levinseniella) gavilanicola sp. nov. (Trematoda: Microphallidae) in the common black hawk Buteogallus anthracinus from Venezuela, and notes on its life cycle. Revista Científica, 25, 260–265.Google Scholar
  19. Didyk, A. S., Canaris, A. G., & Kinsella, J. M. (2007). Intestinal helminths of the spotted sandpiper, Actitis macularius (L.), during fall migration in New Brunswick, Canada, with a checklist of helminths reported from this host. Comparative Parasitology, 74, 359–363.CrossRefGoogle Scholar
  20. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Etges, F. J. (1953). Studies on the life histories of Maritrema obstipum (Van Cleave and Mueller, 1932) and Levinseniella amnicolae n. sp. (Trematoda: Microphallidae). Journal of Parasitology, 39, 643–662.CrossRefPubMedGoogle Scholar
  22. Ewart, M. J., & McLaughlin, J. D. (1990). Helminths from spring and fall migrant bufflehead ducks (Bucephala albeola) at Delta, Manitoba, Canada. Canadian Journal of Zoology, 68, 2230–2233.CrossRefGoogle Scholar
  23. Galaktionov, K. V., Blasco-Costa, I., & Olson, P. D. (2012). Life cycles, molecular phylogeny and historical biogeography of the ‘pygmaeus’ microphallids (Digenea: Microphallidae): widespread parasites of marine and coastal birds in the Holarctic. Parasitology, 139, 1346–1360.CrossRefPubMedGoogle Scholar
  24. Gibson, D. I. (1996). Trematoda. In: Margolis, L., & Kabata, Z. (Eds) Guide to the Parasites of Fishes of Canada, Part IV. Ottawa: NRC Press, 373 pp.Google Scholar
  25. Hernández-Orts, J. S., Pinacho-Pinacho, C. D., García-Varela, M., & Kostadinova, A. (2016). Maritrema corai n. sp. (Digenea: Microphallidae) from the white ibis Eudocimus albus (Linnaeus) (Aves: Threskiornithidae) in Mexico. Parasitology Research, 115, 547–559.CrossRefPubMedGoogle Scholar
  26. Hunter, W. S. (1952). Contributions to the morphology and life-history of Gynaecotyla adunca (Linton, 1905) (Trematoda: Microphallidae). Journal of Parasitology, 38, 308–314.CrossRefPubMedGoogle Scholar
  27. Kakui, K. (2014). A novel transmission pathway: first report of a larval trematode in a tanaidacean crustacean. Fauna Ryukyuana, 17, 13–22.Google Scholar
  28. Keller, A., Schleicher, T., Schultz, J., Müller, T., Dandekar, T., & Wolf, M. (2009). 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene, 430, 50–57.CrossRefPubMedGoogle Scholar
  29. Kudlai, O., Cutmore, S. C., & Cribb, T. H. (2015). Morphological and molecular data for three species of the Microphallidae (Trematoda: Digenea) in Australia, including the first descriptions of the cercariae of Maritrema brevisacciferum Shimazu et Pearson, 1991 and Microphallus minutus Johnston, 1948. Folia Parasitologica, 62, 053.Google Scholar
  30. Maddison, W. P., & Maddison, D. R. (2015). Mesquite: a modular system for evolutionary analysis. Version 3.01 http://mesquiteproject.org.
  31. McCurdy, D. G., Boates, J. S., & Forbes, M. R. (2001). An empirical model of the optimal timing of reproduction for female amphipods infected by trematodes. Journal of Parasitology, 87, 24–30.CrossRefPubMedGoogle Scholar
  32. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, pp. 1–8.Google Scholar
  33. Nahhas, F. M., & Cable, R. M. (1964). Digenetic and aspidogastric trematodes from marine fishes of Curaçao and Jamaica. Tulane Studies in Zoology, 11, 167–228.CrossRefGoogle Scholar
  34. O’Dwyer, K., Blasco-Costa, I., Poulin, R., & Faltýnková, A. (2014). Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: Morphological and molecular data. Systematic Parasitology, 89, 133–152.CrossRefPubMedGoogle Scholar
  35. Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A., & Littlewood, D. T. J. (2003). Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology, 33, 733–755.CrossRefPubMedGoogle Scholar
  36. Overstreet, R. M., Cook, J. O., & Heard, R. W. (2009). Trematoda (Platyhelminthes) of the Gulf of Mexico. In Tunnell, J. W., Felder, D. L., & Earle, S. A. (Eds.), Gulf of Mexico origin, waters, and biota: Volume 1, Biodiversity. Texas A&M University Press, Austin, pp. 419–486.Google Scholar
  37. Overstreet, R. M., & Perry, H. M. (1972). A new microphallid trematode from the blue crab in the northern Gulf of Mexico. Transactions of the American Microscopical Society, 91, 436–440.CrossRefGoogle Scholar
  38. Presswell, B., Blasco-Costa, I., & Kostadinova, A. (2014). Two new species of Maritrema Nicoll, 1907 (Digenea: Microphallidae) from New Zealand: morphological and molecular characterisation. Parasitology Research, 113, 1641–1656.CrossRefPubMedGoogle Scholar
  39. Rausch, R. (1947). Some observations on the host relationships of Microphallus opacus (Ward, 1894) (Trematoda: Microphallidae). Transactions of the American Microscopical Society, 66, 59–63.CrossRefPubMedGoogle Scholar
  40. Reimer, L. F., & Szuks, H. (1973). Zum Auftreten von Microphallidae bei Meeresfischen. Zoologischer Anzeiger, 190, 127–132.Google Scholar
  41. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sheldon, A. J. (1938). Studies on the life cycle of Maritrema medium (Trematoda) and a redescription of the species. Journal of Parasitology, 24, 259–262.CrossRefGoogle Scholar
  43. Smales, L. R. (1997). A review of the helminth parasites of Australian rodents. Australian Journal of Zoology, 45, 505–521.CrossRefGoogle Scholar
  44. Smith, N. F., Ruiz, G. M., & Reed, S. A. (2007). Habitat and host specificity of trematode metacercariae in fiddler crabs from mangrove habitats in Florida. Journal of Parasitology, 93, 999–1005.CrossRefPubMedGoogle Scholar
  45. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tkach, V. V., Kudlai, O., & Kostadinova, A. (2016). Molecular phylogeny and systematics of the Echinostomatoidea Looss, 1899 (Platyhelminthes: Digenea). International Journal for Parasitology, 46, 171–185.CrossRefPubMedGoogle Scholar
  47. Tkach, V. V., Littlewood, D. T. J., Olson, P. D., Kinsella, J. M., & Swiderski, Z. (2003). Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Systematic Parasitology, 56, 1–15.CrossRefPubMedGoogle Scholar
  48. Tkach, V., Pawlowski, J., & Mariaux, J. (2000). Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial lsrDNA sequences. International Journal for Parasitology, 30, 83–93.CrossRefPubMedGoogle Scholar
  49. Ward, H. B. (1984). On the parasites of the lake fish: notes on the structure and life history of Distoma opacum, n. sp. Proceedings of the American Microscopical Society, 15, 173–182.CrossRefGoogle Scholar
  50. West, J., Mitchell, A., & Pung, O. J. (2014). Optimization of conditions for in vitro culture of the microphallid digenean Gynaecotyla adunca. Journal of Parasitology Research, 382153.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of ParasitologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
  2. 2.Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom CampusNorth-West UniversityPotchefstroomSouth Africa
  3. 3.Institute of EcologyNature Research CentreVilniusLithuania
  4. 4.School of Biological SciencesThe University of QueenslandSt LuciaAustralia

Personalised recommendations