Systematic Parasitology

, Volume 93, Issue 3, pp 295–306 | Cite as

Molecular approaches to trematode systematics: ‘best practice’ and implications for future study

  • Isabel Blasco-Costa
  • Scott C. Cutmore
  • Terrence L. Miller
  • Matthew J. Nolan


To date, morphological analysis has been the cornerstone to trematode systematics. However, since the late-1980s we have seen an increased integration of genetic data to overcome problems encountered when morphological data are considered in isolation. Here, we provide advice regarding the ‘best molecular practice’ for trematode taxonomy and systematic studies, in an attempt to help unify the field and provide a solid foundation to underpin future work. Emphasis is placed on defining the study goals and recommendations are made regarding sample preservation, extraction methods, and the submission of molecular vouchers. We advocate generating sequence data from all parasite species/host species/geographic location combinations and stress the importance of selecting two independently evolving loci (one ribosomal and one mitochondrial marker). We recommend that loci should be chosen to provide genetic variation suitable to address the question at hand and for which sufficient ‘useful’ comparative sequence data already exist. Quality control of the molecular data via using proof-reading Taq polymerase, sequencing PCR amplicons using both forward and reverse primers, ensuring that a minimum of 85% overlap exists when constructing consensus sequences, and checking electropherograms by eye is stressed. We advise that all genetic results are best interpreted using a holistic biological approach, which considers morphology, host identity, collection locality, and ecology. Finally, we consider what advances next-generation sequencing holds for trematode taxonomy and systematics.


Mitochondrial Gene Species Concept Polymerase Chain Reaction Amplicon Trematode Species Biological Species Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Associate Professor Thomas Cribb for organising the workshop ‘The biodiversity of trematodes of fishes’ at the 9th International Symposium on Fish Parasites and sharing his opinion on this topic. We are also grateful to two anonymous reviewers and the Editor-in-Chief for their very constructive comments.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.


  1. Adlard, R. D., Barker, S. C., Blair, D., & Cribb, T. H. (1993). Comparison of the second internal transcribed spacer (ribosomal DNA) from populations and species of Fasciolidae (Digenea). International Journal for Parasitology, 23, 423–425.CrossRefPubMedGoogle Scholar
  2. Agapow, P. M., Bininda-Emonds, O. R. P., Crandall, K. A., Gittleman, J. L., Mace, G. M., et al. (2004). The impact of species concept on biodiversity studies. The Quarterly Review of Biology, 79, 161–179.CrossRefPubMedGoogle Scholar
  3. Astrin, J. J., Zhou, X., & Misof, B. (2013). The importance of biobanking in molecular taxonomy, with proposed definitions for vouchers in a molecular context. ZooKeys, 365, 67–70.CrossRefPubMedGoogle Scholar
  4. Avise, J. C. (2000). Phylogeography: the history and formation of species. London: Harvard University Press, 464 pp.Google Scholar
  5. Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., et al. (1987). Intraspecific phylogeography—The mitochondrial-DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18, 489–522.CrossRefGoogle Scholar
  6. Blair, D., & McManus, D. P. (1989). Restriction enzyme mapping of ribosomal DNA can distinguish between fasciolid (liver fluke) species. Molecular and Biochemical Parasitology, 36, 201–208.CrossRefPubMedGoogle Scholar
  7. Blasco-Costa, I., Faltýnková, A., Georgieva, S., Skirnisson, K., Scholz, T., & Kostadinova, A. (2014). Fish pathogens near the Arctic Circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: diplostomidae) in Iceland. International Journal for Parasitology, 44, 703–715.CrossRefPubMedGoogle Scholar
  8. Brabec, J., Kostadinova, A., Scholz, T., & Littlewood, D. T. J. (2015). Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens. Parasites & Vectors, 8, 336.CrossRefGoogle Scholar
  9. Bray, R. A., Littlewood, D. T. J., Herniou, E. A., Williams, B., & Henderson, R. E. (1999). Digenean parasites of deep-sea teleosts: a review and case studies of intrageneric phylogenies. Parasitology, 119, S125–S144.CrossRefPubMedGoogle Scholar
  10. Bray, R. A., Waeschenbach, A., Cribb, T. H., Weedall, G. D., Dyal, P., & Littlewood, D. T. J. (2009). The phylogeny of the Lepocreadioidea (Platyhelminthes, Digenea) inferred from nuclear and mitochondrial genes: Implications for their systematics and evolution. Acta Parasitologica, 54, 310–329.Google Scholar
  11. Brooks, D. R., & Hoberg, E. P. (2001). Parasite systematics in the 21st century: opportunities and obstacles. Trends in Parasitology, 17, 273–275.CrossRefPubMedGoogle Scholar
  12. Brown, W. M., George, M., & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 76, 1967–1971.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Calvignac, S., Konecny, L., Malard, F., & Douady, C. J. (2011). Preventing the pollution of mitochondrial datasets with nuclear mitochondrial paralogs (numts). Mitochondrion, 11, 246–254.CrossRefPubMedGoogle Scholar
  14. Cribb, T. H., Adlard, R. D., Bray, R. A., Sasal, P., & Cutmore, S. C. (2014). Biogeography of tropical Indo-West Pacific parasites: a cryptic species of Transversotrema and evidence for rarity of Transversotrematidae (Trematoda) in French Polynesia. Parasitology International, 63, 285–294.CrossRefPubMedGoogle Scholar
  15. Cribb, T. H., Adlard, R. D., Hayward, C. J., Bott, N. J., Ellis, D., et al. (2011). The life cycle of Cardicola forsteri (Trematoda: Aporocotylidae), a pathogen of ranched southern bluefin tuna, Thunnus maccoyi. International Journal for Parasitology, 41, 861–870.CrossRefPubMedGoogle Scholar
  16. Cribb, T. H., & Bray, R. A. (2010). Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology, 76, 1–7.CrossRefPubMedGoogle Scholar
  17. Criscione, C. D., & Blouin, M. S. (2005). Effective sizes of macroparasite populations: A conceptual model. Trends in Parasitology, 21, 212–217.CrossRefPubMedGoogle Scholar
  18. Criscione, C. D., Poulin, R., & Blouin, M. S. (2005). Molecular ecology of parasites: Elucidating ecological and microevolutionary processes. Molecular Ecology, 14, 2247–2257.CrossRefPubMedGoogle Scholar
  19. Criscione, C. D., Vilas, R., Paniagua, E., & Blouin, M. S. (2011). More than meets the eye: detecting cryptic microgeographic population structure in a parasite with a complex life cycle. Molecular Ecology, 20, 2510–2524.CrossRefPubMedGoogle Scholar
  20. Curran, S. S., Tkach, V. V., & Overstreet, R. M. (2013). A new species of Homalometron (Digenea: Apocreadiidae) from fishes in the northern gulf of Mexico. Journal of Parasitology, 99, 93–101.CrossRefPubMedGoogle Scholar
  21. Cutmore, S. C., Miller, T. L., Bray, R. A., & Cribb, T. H. (2014). A new species of Plectognathotrema Layman, 1930 (Trematoda: Zoogonidae) from an Australian monacanthid, with a molecular assessment of the phylogenetic position of the genus. Systematic Parasitology, 89, 237–246.CrossRefPubMedGoogle Scholar
  22. Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415.CrossRefGoogle Scholar
  23. De Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56, 879–886.CrossRefPubMedGoogle Scholar
  24. Detwiler, J. T., Bos, D. H., & Minchella, D. J. (2010). Revealing the secret lives of cryptic species: Examining the phylogenetic relationships of echinostome parasites in North America. Molecular Phylogenetics and Evolution, 55, 611–620.CrossRefPubMedGoogle Scholar
  25. Diaz, P. E., Bray, R. A., Cutmore, S. C., Ward, S., & Cribb, T. H. (2015). A complex of species related to Paradiscogaster glebulae (Digenea: Faustulidae) in chaetodontid fishes (Teleostei: Perciformes) of the Great Barrier Reef. Parasitology International, 64, 421–428.CrossRefPubMedGoogle Scholar
  26. Donoghue, M. J. (1985). A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist, 88, 172–181.CrossRefGoogle Scholar
  27. Faltýnková, A., Georgieva, S., Kostadinova, A., Blasco-Costa, I., Scholz, T., & Skírnisson, K. (2014). Diplostomum von Nordmann, 1832 (Digenea: Diplostomidae) in the sub-Arctic: descriptions of the larval stages of six species discovered by morphological and molecular analyses. Systematic Parasitology, 89, 195–213.CrossRefPubMedGoogle Scholar
  28. Faltýnková, A., Georgieva, S., Soldánová, M., & Kostadinova, A. (2015). A re-assessment of species diversity within the ‘revolutum’ group of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) in Europe. Systematic Parasitology, 90, 1–25.CrossRefPubMedGoogle Scholar
  29. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.PubMedGoogle Scholar
  30. Georgieva, S., Faltýnková, A., Brown, R., Blasco-Costa, I., Soldánová, M., Sitko, J., Scholz, T., & Kostadinova, A. (2014). Echinostomarevolutum’ (Digenea: Echinostomatidae) species complex revisited: species delimitation based on novel molecular and morphological data gathered in Europe. Parasites & Vectors, 7, 520.Google Scholar
  31. Georgieva, S., Soldánová, M., Pérez-del-Olmo, A., Dangel, R. D., Sitko, J., Sures, B., & Kostadinova, A. (2013). Molecular prospecting for European Diplostomum (Digenea: Diplostomidae) reveals cryptic diversity. International Journal for Parasitology, 43, 57–72.CrossRefPubMedGoogle Scholar
  32. Gerber, A. S., Loggins, R., Kumar, S., & Dowling, T. E. (2001). Does nonneutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes? Annual Review of Genetics, 35, 539–566.CrossRefPubMedGoogle Scholar
  33. Herrmann, K. K., Poulin, R., Keeney, D. B., & Blasco-Costa, I. (2014). Genetic structure in a progenetic trematode: signs of cryptic species with contrasting reproductive strategies. International Journal for Parasitology, 44, 811–818.CrossRefPubMedGoogle Scholar
  34. Hildebrand, J., Pulis, E. E., & Tkach, V. V. (2015). Redescription and phylogenetic relationships of the rare Lyperosomum sarothrurae Baer, 1959 (Digenea: Dicrocoeliidae). Acta Parasitologica, 60, 371–377.CrossRefPubMedGoogle Scholar
  35. Hillis, D. M., & Davis, S. K. (1986). Evolution of ribosomal DNA: fifty million years of recorded history in the frog genus Rana. Evolution, 40, 1275–1288.CrossRefGoogle Scholar
  36. Hillis, D. M., & Dixon, M. T. (1991). Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66, 411–453.CrossRefPubMedGoogle Scholar
  37. Hunter, J. A., Ingram, E., Adlard, R. D., Bray, R. A., & Cribb, T. H. (2010). A cryptic complex of Transversotrema species (Digenea: Transversotrematidae) on labroid, haemulid and lethrinid fishes in the Indo-West Pacific Region, including the description of three new species. Zootaxa, 2652, 17–32.Google Scholar
  38. Jannotti-Passos, L. K., Souza, C. P., Parra, J. C., & Simpson, A. J. G. (2001). Biparental mitochondrial DNA inheritance in the parasitic trematode Schistosoma mansoni. The Journal of Parasitology, 87, 79–82.CrossRefPubMedGoogle Scholar
  39. Justine, J.-L., Briand, M. J., & Bray, R. A. (2012). A quick and simple method, usable in the field, for collecting parasites in suitable condition for both morphological and molecular studies. Parasitology Research, 111, 341–351.CrossRefPubMedGoogle Scholar
  40. Kaukas, A., & Rollinson, D. (1997). Interspecific variation within the ‘hypervariable’ region of the 18S ribosomal RNA gene among species of Schistosoma Weinland, 1858 (Digenea). Systematic Parasitology, 36, 157–160.CrossRefGoogle Scholar
  41. Keeney, D. B., Waters, J. M., & Poulin, R. (2007). Diversity of trematode genetic clones within amphipods and the timing of same-clone infections. International Journal for Parasitology, 37, 351–357.CrossRefPubMedGoogle Scholar
  42. Kingman, J. F. C. (1982a). The coalescent. Stochastic Processes and their Applications, 13, 235–248.CrossRefGoogle Scholar
  43. Kingman, J. F. C. (1982b). On the genealogy of large populations. Journal of Applied Probability, 19, 27–43.CrossRefGoogle Scholar
  44. Králová-Hromadová, I., Špakulová, M., Horáčková, E., Turčeková, L., Novobilský, A., et al. (2008). Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): Intraspecific variation and differentiation from Fasciola hepatica. Journal of Parasitology, 94, 58–67.CrossRefPubMedGoogle Scholar
  45. Le, T. H., Blair, D., & McManus, D. P. (2002). Mitochondrial genomes of parasitic flatworms. Trends in Parasitology, 18, 206–213.CrossRefPubMedGoogle Scholar
  46. León-Regagnon, V., & Paredes, C. E. L. (2002). Haematoloechus danbrooksi n. sp. (Digenea: Plagiorchioidea) from Rana vaillanti from Los Tuxtlas, Veracruz. Mexico. Journal of Parasitology, 88, 1215–1221.CrossRefPubMedGoogle Scholar
  47. Leung, T., Keeney, D., & Poulin, R. (2009). Cryptic species complexes in manipulative echinostomatid trematodes: when two become six. Parasitology, 136, 241–252.CrossRefPubMedGoogle Scholar
  48. Li, J., Zhao, G. H., Zou, F. C., Mo, X. H., Yuan, Z. G., et al. (2010). Combined mitochondrial 16S and 12S rDNA sequences: an effective genetic marker for inter-species phylogenetic analysis of zoonotic trematodes. Parasitology Research, 107, 561–569.CrossRefPubMedGoogle Scholar
  49. Liu, G.-H., Gasser, R., Young, N., Song, H.-Q., Ai, L., & Zhu, X.-Q. (2014). Complete mitochondrial genomes of the ‘intermediate form’ of Fasciola and Fasciola gigantica, and their comparison with F. hepatica. Parasites & Vectors, 7, 150.Google Scholar
  50. Locke, S. A., McLaughlin, D. J., & Marcogliese, D. J. (2010). DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River. Canada. Molecular Ecology, 19, 2813–2827.CrossRefPubMedGoogle Scholar
  51. Luton, K., Walker, D., & Blair, D. (1992). Comparisons of ribosomal internal transcribed spacers from two congeneric species of flukes (Platyhelminthes: Trematoda: Digenea). Molecular and Biochemical Parasitology, 56, 323–327.CrossRefPubMedGoogle Scholar
  52. Mayden, R. L. (1997). A hierarchy of species concepts: The denouement in the saga of the species problem. In Claridge, M. F., Dawah, H. A., and Wilson, M. R. (Eds.) Species: The units of biodiversity. London: Chapman and Hall, pp. 381–424.Google Scholar
  53. Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press, 372 pp.Google Scholar
  54. Miller, T. L., Adlard, R. D., Bray, R. A., Justine, J.-L., & Cribb, T. H. (2010). Cryptic species of Euryakaina n. g. (Digenea: Cryptogonimidae) from sympatric lutjanids in the Indo-West Pacific. Systematic Parasitology, 77, 185–204.CrossRefPubMedGoogle Scholar
  55. Miura, O., Kuris, A. M., Torchin, M. E., Hechinger, R. F., Dunham, E. J., & Chiba, S. (2005). Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse). International Journal for Parasitology, 35, 793–801.CrossRefPubMedGoogle Scholar
  56. Mone, H., Minguez, S., Ibikounle, M., Allienne, J. F., Massougbodji, A., & Mouahid, G. (2012). Natural interactions between S. haematobium and S. guineensis in the Republic of Benin. Scientific World Journal, 2012, 793420.Google Scholar
  57. Morgan, J. A. T., & Blair, D. (1995). Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: An aid to establishing relationships within the 37-collar-spine group. Parasitology, 111, 609–615.CrossRefPubMedGoogle Scholar
  58. Moszczynska, A., Locke, S. A., McLaughlin, J. D., Marcogliese, D. J., & Crease, T. J. (2009). Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Molecular Ecology Resources, 9, 75–82.CrossRefPubMedGoogle Scholar
  59. Nadler, S. A., & Pérez-Ponce de León, G. (2011). Integrating molecular and morphological approaches for characterizing parasite cryptic species: Implications for parasitology. Parasitology, 138, 1688–1709.CrossRefPubMedGoogle Scholar
  60. Nolan, M. J., & Cribb, T. H. (2004). The life cycle of Paracardicoloides yamagutii Martin, 1974 (Digenea: Sanguinicolidae). Folia Parasitologica, 51, 320–326.CrossRefPubMedGoogle Scholar
  61. Nolan, M. J., & Cribb, T. H. (2005). The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Advances in Parasitology, 60, 101–163.CrossRefPubMedGoogle Scholar
  62. Nolan, M. J., & Cribb, T. H. (2006). An exceptionally rich complex of Sanguinicolidae von Graff, 1907 (Platyhelminthes: Trematoda) from Siganidae, Labridae and Mullidae (Teleostei: Perciformes) from the Indo-West Pacific Region. Zootaxa, 1218, 3–80.Google Scholar
  63. O’Dwyer, K., Blasco-Costa, I., Poulin, R., & Faltýnková, A. (2014). Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: morphological and molecular data. Systematic Parasitology, 89, 133–152.CrossRefPubMedGoogle Scholar
  64. Olson, P. D., & Tkach, V. V. (2005). Advances and trends in the molecular systematics of the parasitic platyhelminthes. Advances in Parasitology, 60, 165–243.CrossRefPubMedGoogle Scholar
  65. Pérez-Ponce de León, G., & Nadler, S. A. (2010). What we don’t recognize can hurt us: A plea for awareness about cryptic species. Journal of Parasitology, 96, 453–464.CrossRefGoogle Scholar
  66. Pérez-Ponce de León, G., Razo-Mendivil, U., Mendoza-Garfias, B., Rubio-Godoy, M., & Choudhury, A. (2015). A new species of Wallinia Pearse, 1920 (Digenea: Allocreadiidae) in Astyanax mexicanus (Characidae) from Mexico revealed by morphology and sequences of the 28S ribosomal RNA gene. Folia Parasitologica, 62, 018.Google Scholar
  67. Pleijel, F., Jondelius, U., Norlinder, E., Nygren, A., Oxelman, B., et al. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution, 48, 369–371.CrossRefPubMedGoogle Scholar
  68. Poulin, R. (2011). Uneven distribution of cryptic diversity among higher taxa of parasitic worms. Biology Letters, 7, 241–244.PubMedCentralCrossRefPubMedGoogle Scholar
  69. Razo-Mendivil, U., Perez-Ponce de Leon, G., & Rubio-Godoy, M. (2013). Integrative taxonomy identifies a new species of Phyllodistomum (Digenea: Gorgoderidae) from the twospot livebearer, Heterandria bimaculata (Teleostei: Poeciliidae), in Central Veracruz, Mexico. Parasitology Research, 112, 4137–4150.CrossRefPubMedGoogle Scholar
  70. Reusch, T. B. H., Rauch, G., & Kalbe, M. (2004). Polymorphic microsatellite loci for the trematode Diplostomum pseudospathaceum. Molecular Ecology Notes, 4, 577–579.CrossRefGoogle Scholar
  71. Richly, E., & Leister, D. (2004). NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution, 21, 1081–1084.CrossRefPubMedGoogle Scholar
  72. Robles-Pérez, D., García-García, P., Martínez-Pérez, J. M., Rojo-Vázquez, F. A., & Martínez-Valladares, M. (2015). Analysis of genetic variability of Fasciola hepatica populations from different geographical locations by ISSR-PCR. Parasitology, 142, 527–533.CrossRefPubMedGoogle Scholar
  73. Rosen, D. E. (1979). Fishes from the uplands and intermontane basins of Guatemala: revisionary studies and comparative geography. Bulletin of the American Museum of Natural History, 162, 269–375.Google Scholar
  74. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., et al. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491.CrossRefPubMedGoogle Scholar
  75. Sambrook, J., & Russell, D. (2001). Molecular cloning: A laboratory manual. New York: Cold Springs Harbour Laboratory Press, 2028 pp.Google Scholar
  76. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.PubMedCentralCrossRefPubMedGoogle Scholar
  77. Selbach, C., Soldánová, M., Georgieva, S., Kostadinova, A., Kalbe, M., & Sures, M. (2014). Morphological and molecular data for larval stages of four species of Petasiger 1909 (Digenea: Echinostomatidae) with an updated key to the known cercariae from the Palaearctic. Systematic Parasitology, 89, 153–166.CrossRefPubMedGoogle Scholar
  78. Song, H., Buhay, J. E., Whiting, M. F., & Crandall, K. A. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America, 105, 13486–13491.PubMedCentralCrossRefPubMedGoogle Scholar
  79. Tkach, V. V., & Pawlowski, J. (1999). A new method of DNA extraction from the ethanol-fixed parasitic worms. Acta Parasitologica, 44, 147–148.Google Scholar
  80. Valkiūnas, G., Atkinson, C. T., Bensch, S., Sehgal, R. N., & Ricklefs, R. E. (2008). Parasite misidentifications in GenBank: how to minimize their number? Trends in Parasitology, 24, 247–248.CrossRefPubMedGoogle Scholar
  81. Van Steenkiste, N., Locke, S. A., Castelin, M., Marcogliese, D. J., & Abbott, C. L. (2015). New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes). Molecular Ecology Resources, 15, 945–952.CrossRefPubMedGoogle Scholar
  82. Will, K. W., Mishler, B. D., & Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54, 844–851.CrossRefPubMedGoogle Scholar
  83. Zarowlecki, M. Z., Huyse, T., & Littlewood, D. T. J. (2007). Making the most of mitochondrial genomes—Markers for phylogeny, molecular ecology and barcodes in Schistosoma (Platyhelminthes : Digenea). International Journal for Parasitology, 37, 1401–1418.CrossRefGoogle Scholar
  84. Zhao, Q. P., Jiang, M. S., Dong, H. F., & Nie, P. (2012). Diversification of Schistosoma japonicum in mainland China revealed by mitochondrial DNA. PLoS Neglected Tropical Diseases, 6, e1503.PubMedCentralCrossRefPubMedGoogle Scholar
  85. Zikmundová, J., Georgieva, S., Faltýnková, A., Soldánová, M., & Kostadinova, A. (2014). Species diversity of Plagiorchis Lühe, 1899 (Digenea: Plagiorchiidae) in lymnaeid snails from freshwater ecosystems in central Europe revealed by molecules and morphology. Systematic Parasitology, 88, 37–54.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Isabel Blasco-Costa
    • 1
  • Scott C. Cutmore
    • 2
  • Terrence L. Miller
    • 3
    • 4
  • Matthew J. Nolan
    • 5
  1. 1.Department of InvertebratesNatural History Museum of GenevaGenevaSwitzerland
  2. 2.School of Biological SciencesThe University of QueenslandSt LuciaAustralia
  3. 3.Department of FisheriesFish Health LaboratorySouth PerthAustralia
  4. 4.Centre for Sustainable Tropical Fisheries and Aquaculture, College of Marine and Environmental SciencesJames Cook UniversityCairnsAustralia
  5. 5.Department of Pathology and Pathogen Biology, Royal Veterinary CollegeUniversity of LondonHatfieldUK

Personalised recommendations