Advertisement

Systematic Parasitology

, Volume 91, Issue 1, pp 49–61 | Cite as

A morphological and molecular study of two species of Raphidascaroides Yamaguti, 1941 (Nematoda: Anisakidae), parasites of doradid catfish (Siluriformes) in South America, with a description of R. moraveci n. sp.

  • Felipe B. Pereira
  • Luiz E. R. Tavares
  • Tomáš Scholz
  • José L. Luque
Article

Abstract

Nematodes of the genus Raphidascaroides Yamaguti, 1941 parasitising doradid catfishes (Siluriformes: Doradidae) in Brazil were studied based on morphological and molecular evaluation of newly collected material. A new species, Raphidascaroides moraveci n. sp., is described from the intestine of Platydoras armatulus (Valenciennes) from River Miranda, River Paraguay basin, Pantanal, Mato Grosso do Sul. The new species differs from all of the congeners in having short spicules (163–217 μm in length) representing less than 1% of the total body length and in the posterior region of cloacal opening covered by small rudimentary spines. In addition, it differs from the other congeneric species in the number and arrangement of the caudal papillae and the structure of lips and tail. Raphidascaroides moraveci n. sp. is the third species described from freshwater fishes and the second one in the Neotropical Region. New morphological data on R. brasiliensis Moravec & Thatcher, 1997 from Megalodoras uranoscopus (Eigenmann & Eigenmann) and Platydoras costatus (Linnaeus) (both new host records) from River Xingu, River Amazon basin, Pará, are provided including scanning electron micrographs of taxonomically important structures. The differentiation of the new species is supported by molecular data (partial sequences of the small and large subunits of the rRNA gene).

Keywords

Total Body Length Excretory Pore Anisakid Nematode River Amazon Basin Precloacal Papilla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by the “Ciência sem fronteiras” Brazilian program for visiting researchers (No. 135/2012; stay of TS at the Universidade Federal Rural de Rio de Janeiro) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grants to JLL (Nos 474077/2011-0, 304254/2011-8, 402665/2012-0). FBP was supported by a CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) fellowship for a five month stay at the Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice (IPCAS). TS was also supported by the IPCAS (RVO: 60077344) and the Czech Science Foundation (P505/12/G112). The authors’ thanks are also due to the staff of the Laboratory of Electron Microscopy, IPCAS, for their technical assistance, Blanka Škoríková for help in providing scientific literature, František Moravec for his valuable comments during manuscript preparation and Jan Brabec, all from the IPCAS, for help with molecular analyses, and David Gonzalez-Solís from El Colegio de la Frontera Sur, Chetumal, Mexico, for valuable advice. Thanks are also due to Aldenice Pereira, Fabiano Paschoal, Philippe Vieira Alves and Juliana Moreira for help with fish collection and parasitological examination and Emil José Hernández Ruiz, Universidade Federal do Pará, Altamira, for providing the facilities during the field trip to the River Xingu. Finally, the authors would also like to thank Fernando Paiva and the staff of the Universidade Federal do Mato Grosso do Sul, for providing logistical support and facilities during collecting trip to the River Miranda.

References

  1. Anderson, R C., Chabaud, A. G., & Willmott, S. (2009). Keys to the nematode parasites of vertebrates: archival volume. Wallingford: CABI Publishing, 480 pp. Google Scholar
  2. Astrin, J. J., Zhou, X., & Misof, B. (2013). The importance of biobanking in molecular taxonomy, with proposed definitions for vouchers in a molecular context. Zookeys, 365, 67–70.CrossRefPubMedGoogle Scholar
  3. Bilqees, F. M., Shaukat, N., Navqi, S. M. H. M., & Medi, R. (2005). Raphidascaroides elongatus sp. n. (Nematoda: Anisakidae) from the fish Pellona elongata Bennet of Korangi Creek, Karachi, Pakistan. International Journal of Biology and Biotechnology, 2, 811–813.Google Scholar
  4. Bruce, N. L. (1990). Hysterothylacium Ward and Magath, 1917, and Ichthyascaris Wu, 1949, ascaridoid nematodes from Australian demersal fishes. Memoirs of the Queensland Museum, 28, 389–426.Google Scholar
  5. Černotíková, E., Horák, A., & Moravec, F. (2011). Phylogenetic relationships of some spirurine nematodes (Nematoda: Chromadorea: Rhabditida: Spirurina) parasitic in fishes inferred from SSU rRNA gene sequences. Folia Parasitologica, 58, 135–148.CrossRefPubMedGoogle Scholar
  6. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.CrossRefPubMedGoogle Scholar
  7. Froese, R., & Pauly, D. (Eds) (2014). FishBase. World Wide Web electronic publication. http://www.fishbase.org, version 06/2014.
  8. Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.CrossRefPubMedGoogle Scholar
  9. Hooper, J. A. N. (1983). Parasites of estuarine and oceanic flathead fishes (family Platycephalidae) from northern New South Wales. Australian Journal of Zoology Supplementary Series, 90, 1–69.CrossRefGoogle Scholar
  10. Huelsenbeck, J. P., & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.CrossRefPubMedGoogle Scholar
  11. Katoh, K., Misawa, K., Kuma, K., & Myiata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.CrossRefPubMedCentralPubMedGoogle Scholar
  12. Khalil, L. F. (1961). On a new nematode, Raphidascaroides bishaii sp. nov. from a freshwater fish, Gymnarchus niloticus, in the Sudan. Journal of Helminthology, 35, 263–268.CrossRefPubMedGoogle Scholar
  13. Khalil, L. F., & Oyetayo, A. S. (1988). Raphidascaroides africanus sp. nov. (Nematoda: Anisakidae) from the fish Bostrychus africanus in Nigeria and a key to the species of the genus Raphidascaroides Yamaguti, 1941. Journal of African Zoology, 102, 85–91.Google Scholar
  14. Moravec, F. (1998). Nematodes of the freshwater fishes of the Neotropical region. Prague: Academia, 464 pp.Google Scholar
  15. Moravec, F., & Nagasawa, K. (2000). Some anisakid nematodes from marine fishes of Japan and the North Pacific Ocean. Journal of Natural History, 34, 1555–1574.CrossRefGoogle Scholar
  16. Moravec, F., & Thatcher, V. E. (1997). Raphidascaroides brasiliensis n. sp. (Nematoda: Anisakidae), an intestinal parasite of the thorny catfish Pterodoras granulosus from Amazonia. Brazil. Systematic Parasitology, 38, 65–71.CrossRefGoogle Scholar
  17. Nadler, S. A., & Hudspeth, D. S. (1998). Ribossomal DNA and the phylogeny of the Ascaridoidea (Nematoda: Secernentea): implications for morphological evolution and classification. Molecular Phylogenetics and Evolution, 10, 221–236.CrossRefPubMedGoogle Scholar
  18. Nadler, S. A., D’Amelio, S., Dailey, M. D., Paggi, L., Siu, S., & Sakanari, J. A. (2005). Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from Northern Pacific mammals. Journal of Parasitology, 91, 1413–1429.CrossRefPubMedGoogle Scholar
  19. Nunn, G. B. (1992). Nematode molecular evolution. PhD Dissertation. University of Nottingham, UK, 187 pp.Google Scholar
  20. Petter, A. J. (1995). Nematodes de poissons du Paraguay. VIII. Habronematoidea, Dracunculoidea et Ascaridoidea. Revue Suisse de Zoologie, 102, 89–102.Google Scholar
  21. Rajyalakshmi, I. (1994). Raphidascaroides indicus n. sp. (Nematoda: Heterocheilidae) from the stomach of shark Chiloscyllium indicum (Gmelin) of Visakhaptnam. Rivista di Parassitologia, 11, 179–185.Google Scholar
  22. Rajyalakshmi, I. (1995). Raphidascaroides bengali n. sp. Nematoda: Heterocheilidae from marine eel fish. Uroconger lepturus Richardson. Rivista di Parassitologia, 123, 467–473.Google Scholar
  23. Smythe, A. B., Sanderson, M. J., & Nadler, S. A. (2006). Nematode small subunit phylogeny correlates with alignment parameters. Systematic Biology, 55, 972–992.CrossRefPubMedGoogle Scholar
  24. Werle, E., Schneider, C., Renner, M., Völker, M., & Fiehn, W. (1994). Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Research, 22, 4354–4355.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Yamaguti, S. (1941). Studies on the helminth fauna of Japan. Part 33. Nematodes of fishes II. Japanese Journal of Zoology, 9, 343–396.Google Scholar
  26. Yamaguti, S. (1961). Studies on the helminth fauna of Japan. Part 57. Nematodes of fishes, III. Journal of Helminthology, R. T. Leiper Supplement, 217–228.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Felipe B. Pereira
    • 1
  • Luiz E. R. Tavares
    • 2
  • Tomáš Scholz
    • 3
  • José L. Luque
    • 1
  1. 1.Programa de Pós-Graduação em Ciências Veterinárias and Departamento de Parasitologia AnimalUniversidade Federal Rural do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Parasitologia Veterinária, Centro de Ciências Biológicas e da SaúdeUniversidade Federal do Mato Grosso do SulCampo GrandeBrazil
  3. 3.Institute of ParasitologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic

Personalised recommendations