Systematic Parasitology

, Volume 74, Issue 3, pp 199–217 | Cite as

Anisakis nascettii n. sp. (Nematoda: Anisakidae) from beaked whales of the southern hemisphere: morphological description, genetic relationships between congeners and ecological data

  • Simonetta Mattiucci
  • Michela Paoletti
  • Stephen C. Webb
Article

Abstract

A new anisakid nematode, Anisakis nascettii n. sp., is described from beaked whales Mesoplodon spp. off the coast of New Zealand and South Africa. Morphological and molecular (allozymes and mtDNA cox2 sequence) data were used for diagnostic and identification purposes. Among the 19 allozymes studied, 10 were found to be unique and characteristic for A. nascettii n. sp. Analysis of allozymes demonstrated reproductive isolation from A. ziphidarum Paggi, Nascetti, Webb, Mattiucci, Cianchi & Bullini, 1998 and mtDNA cox2 sequences depict this Anisakis species as a distinct and unique entity. Key morphological diagnostic traits for A. nascettii with respect to the genetically closely related species A. ziphidarum include: spicule length, the spicule/body length ratio, the arrangement of the caudal papillae and the shape of the plectanes of the adult males. Genetic data confirmed that Anisakis sp. A of Pontes et al. (2005), which was partly described by Iglesias et al. (2008), and Anisakis sp. of Valentini et al. (2006) are conspecific with A. nascettii. Both molecular and morphological data indicate that the new species belongs to the ‘ziphidarum-group’; however, it is genetically very distinct from A. ziphidarum (DNei = 0.69, K2P = 0.09), as well as from all of the previously genetically characterised Anisakis spp. All tree topologies inferred by different methods (MP, NJ and Bayesian) support the finding that A. nascettii n. sp. and A. ziphidarum are sister-species. It is also confirmed that A. nascettii n. sp. is, at the adult stage, a parasite of beaked whales of the genus Mesoplodon, whereas, as a larva, it has been identified from the squid Moroteuthis ingens Smith. Furthermore, Mesoplodon bowdoini Andrews represents a new host record for A. ziphidarum. The parallelism between the clade formed by these two anisakine taxa, i.e. A. ziphidarum and A. nascettii, and that formed by their definitive hosts further supports the hypothesis of host–parasite co-evolutionary relationships, as previously suggested for Anisakis spp. and their cetacean hosts.

Notes

Acknowledgements

The authors are very grateful to Mr T. Leung (Otago University, New Zealand), Mr Mike Morrissey (Department of Conservation, Kaikoura, New Zealand) and Dr Peter Best (South African Museum, Cape Town, South Africa) for providing samples used in this study. We wish to thank two anonymous referees, whose remarks and suggestions were useful in improving the manuscript. The research was partly supported by grants from the I Faculty of Medicine of the ‘Sapienza-University of Rome’.

References

  1. Arnason, U., Gullberg, A., & Janke, A. (2004). Mitogenomic analyses provide new insights into cetacean origin and evolution. Gene, 333, 27–34.PubMedCrossRefGoogle Scholar
  2. Berland, B. (1961). Nematodes from some Norwegian marine fishes. Sarsia, 2, 1–50.Google Scholar
  3. Cavalli-Sforza, L. L., & Edwards, A. W. F. (1967). Phylogenetic analysis: Models and estimation procedures. American Journal of Human Genetics, 19, 233–257.PubMedGoogle Scholar
  4. D’Amelio, S., Mathiopoulos, K. D., Santos, C. P., Pugachev, O. N., Webb, S. C., Picanço, M., et al. (2000). Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: Ascaridoidea) defined by polymerase-chain-reaction-based restriction fragment length polymorphism. International Journal for Parasitology, 30, 223–226.PubMedCrossRefGoogle Scholar
  5. Dalebout, M. L., van Helden, A., van Waerebeek, A. K., & Baker, C. S. (1998). Molecular genetic identification of southern hemisphere beaked whales (Cetacea: Ziphiidae). Molecular Ecology, 7, 687–694.Google Scholar
  6. Davey, J. T. (1971). A revision of the genus Anisakis Dujardin, 1845 (Nematoda: Ascaridata). Journal of Helminthology, 45, 51–72.CrossRefGoogle Scholar
  7. Fagerholm, H. P. (1989). Intra-specific variability of the morphology in a single population of the seal parasite Contracaecum osculatum (Rudolphi) (Nematoda, Ascaridoidea), with a redescription of the species. Zoologica Scripta, 18, 33–41.CrossRefGoogle Scholar
  8. Fagerholm, H. P. (1991). Systematic implications of male caudal morphology in Ascaridoid nematode parasites. Systematic Parasitology, 19, 215–228.CrossRefGoogle Scholar
  9. Farjallah, S., Busi, M., Mahjoub, H. O., Slimane, B. B., Paggi, L., Said, K., et al. (2008a). Molecular characterization of larval anisakid nematodes from marine fishes off the Moroccan and Mauritanian coasts. Parasitology International, 57, 430–436.PubMedCrossRefGoogle Scholar
  10. Farjallah, S., Slimane, B. B., Busi, M., Paggi, L., Amor, N., Blel, H., et al. (2008b). Occurrence and molecular identification of Anisakis spp. from the North African coasts of Mediterranean Sea. Parasitology Research, 102, 371–379.PubMedCrossRefGoogle Scholar
  11. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  12. Felsenstein, J. (1995). PHYLIP: Phylogenetic Inference Package, version 3.57c. Department of Genetics, University of Washington, Seattle.Google Scholar
  13. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment and analysis program for Windows 95/98/NT. Nucleic Acid Symposium Series, 41, 95–98.Google Scholar
  14. Hills, D. M., & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42, 182–192.Google Scholar
  15. Huelsenbeck, J. P., & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.PubMedCrossRefGoogle Scholar
  16. Iglesias, R., D’Amelio, S., Ingrosso, S., Farjallah, S., Martínez-Cedeira, J. A., & García-Estévez, J. M. (2008). Molecular and morphological evidence for the occurrence of Anisakis sp. A (Nematoda, Anisakidae) in the Blainville’s beaked whale Mesoplodon densirostris. Journal of Helminthology, 82, 305–308.PubMedCrossRefGoogle Scholar
  17. Larget, B., & Simon, L. D. (1999). Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16, 750–759.Google Scholar
  18. Leatherwood, S., & Reeves, R. (1983). The Sierra Club handbook of whales and dolphins. San Francisco: Sierra Club Books, 320 pp.Google Scholar
  19. Mattiucci, S., Abaunza, P., Damiano, S., Garcia, A., Santos, M. N., & Nascetti, G. (2007). Distribution of Anisakis larvae identified by genetic markers and their use for stock characterization of demersal and pelagic fish from European waters: An update. Journal of Helminthology, 81, 117–127.PubMedCrossRefGoogle Scholar
  20. Mattiucci, S., Farina, V., Campbell, N., Mackenzie, K., Ramos, P., Pinto, A. L., et al. (2008a). Anisakis spp. larvae (Nematoda: Anisakidae) from Atlantic horse mackerel: Their genetic identification and use as biological tags for host stock identification. Fisheries Research, 89, 146–151.CrossRefGoogle Scholar
  21. Mattiucci, S., & Nascetti, G. (2006). Molecular systematics, phylogeny and ecology of anisakid nematodes of the genus Anisakis Dujardin, 1845: an update. Parasite, 13, 99–113.PubMedGoogle Scholar
  22. Mattiucci, S., & Nascetti, G. (2008). Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host–parasite co-evolutionary processes. Advances in Parasitology, 66, 47–148.PubMedCrossRefGoogle Scholar
  23. Mattiucci, S., Nascetti, G., Cianchi, R., Paggi, L., Arduino, P., Margolis, L., et al. (1997). Genetic and ecological data on the Anisakis simplex complex with evidence for a new species (Nematoda, Ascaridoidea, Anisakidae). Journal of Parasitology, 83, 401–416.PubMedGoogle Scholar
  24. Mattiucci, S., Nascetti, G., Dailey, M., Webb, S. C., Barros, N., Cianchi, R., et al. (2005). Evidence for a new species of Anisakis Dujardin, 1845: Morphological description and genetic relationships between congeners (Nematoda: Anisakidae). Systematic Parasitology, 61, 157–171.PubMedCrossRefGoogle Scholar
  25. Mattiucci, S., Paggi, L., Nascetti, G., Abollo, E., Webb, S. C., Pascual, S., et al. (2001). Genetic divergence and reproductive isolation between Anisakis brevispiculata and Anisakis physeteris (Nematoda: Anisakidae). International Journal for Parasitology, 31, 9–14.PubMedCrossRefGoogle Scholar
  26. Mattiucci, S., Paggi, L., Nascetti, G., Ishikura, H., Kikuchi, K., Sato, N., et al. (1998). Allozyme and morphological identification of Anisakis, Contracaecum and Pseudoterranova from Japanese waters (Nematoda: Ascaridoidea). Systematic Parasitology, 40, 81–92.CrossRefGoogle Scholar
  27. Mattiucci, S., Paggi, L., Nascetti, G., Portes Santos, C., Costa, G., Di Beneditto, A. P., et al. (2002). Genetic markers in the study of Anisakis typica (Diesing, 1860): larval identification and genetic relationships with other species of Anisakis Dujardin, 1845 (Nematoda: Anisakidae). Systematic Parasitology, 51, 159–170.Google Scholar
  28. Mattiucci, S., Paoletti, M., Webb, S. C., Sardella, N., Timi, J. T., Berland, B., et al. (2008a). Genetic relationships among species of Contracaecum Railliet & Henry, 1912 and Phocascaris Höst, 1932 (Nematoda: Anisakidae) from pinnipeds inferred from mitochondrial cox2 sequences, and congruence with allozyme data. Parasite, 15, 408–419.PubMedGoogle Scholar
  29. Mattiucci, S., Paoletti, M., Olivero-Verbel, J., Baldiris, R., Arroyo-Salgado, B., Garbin, L., et al. (2008b). Contracaecum bioccai n. sp. from the brown pelican Pelecanus occidentalis (L.) in Colombia (Nematoda: Anisakidae): Morphology, molecular evidence and its genetic relationship with congeners from fish-eating birds. Systematic Parasitology, 69, 101–121.PubMedCrossRefGoogle Scholar
  30. Nadler, S. A., Carreno, R. A., Mejía-Madrid, H., Ullberg, J., Pagan, C., Houston, R., et al. (2007). Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology, 134, 1421–1442.PubMedCrossRefGoogle Scholar
  31. Nadler, S. A., D’Amelio, S., Dailey, M. D., Paggi, L., Siu, S., & Sakanari, J. A. (2005). Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from northern Pacific marine mammals. Journal of Parasitology, 91, 1413–1429.PubMedCrossRefGoogle Scholar
  32. Nadler, S. A., & Hudspeth, D. S. S. (2000). Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: Hypotheses of structural and sequence evolution. Journal of Parasitology, 86, 380–393.PubMedCrossRefGoogle Scholar
  33. Nascetti, G., Paggi, L., Orecchia, P., Smith, J. W., Mattiucci, S., & Bullini, L. (1986). Electrophoretic studies on Anisakis simplex complex (Ascaridida: Anisakidae) from the Mediterranean and North East Atlantic. International Journal for Parasitology, 16, 633–640.PubMedCrossRefGoogle Scholar
  34. Nei, M. (1972). Genetic distance between populations. American Naturalist, 106, 283–292.CrossRefGoogle Scholar
  35. Nikaido, M., Matsuno, F., Hamilton, H., Brownell, R. L., Jr., Cao, Y., Wang, D., et al. (2001). Retroposon analysis of major cetacean lineages: The monophyly of toothed whales and the paraphyly of river dolphins. Proceedings of the National Academy of Sciences, 98, 7384–7389.CrossRefGoogle Scholar
  36. Paggi, L., Mattiucci, S., Gibson, D. I., Berland, B., Nascetti, G., Cianchi, R., et al. (2000). Pseudoterranova decipiens species A and B (Nematoda: Ascaridoidea): Nomenclatural designation, morphological diagnostic characters and genetic markers. Systematic Parasitology, 45, 185–197.PubMedCrossRefGoogle Scholar
  37. Paggi, L., Nascetti, G., Webb, S. C., Mattiucci, S., Cianchi, R., & Bullini, L. (1998). A new species of Anisakis Dujardin, 1845 (Nematoda: Anisakidae) from beaked whales (Ziphiidae): Allozyme and morphological evidence. Systematic Parasitology, 40, 161–174.CrossRefGoogle Scholar
  38. Pontes, T., D’Amelio, S., Costa, G., & Paggi, L. (2005). Molecular characterization of larval anisakid nematodes from marine fishes of Madeira by a PCR-based approach, with evidence for a new species. Journal of Parasitology, 91, 1430–1434.PubMedCrossRefGoogle Scholar
  39. Posada, D., & Buckley, T. R. (2004). Model selection and model averaging in phylogenetics: Advantages of the AIC and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53, 793–808.PubMedCrossRefGoogle Scholar
  40. Posada, D., & Crandall, K. A. (1998). Modeltest: Testing the model of DNA substitution. Bioinformatics, 1, 817–818.CrossRefGoogle Scholar
  41. Quiazon, K. M. A., Yoshinaga, T., Ogawa, K., & Yukami, R. (2008). Morphological differences between larvae and in vitro-cultured adults of Anisakis simplex (sensu stricto) and Anisakis pegreffii (Nematoda: Anisakidae). Parasitology International, 57, 483–489.PubMedCrossRefGoogle Scholar
  42. Reeder, T. W. (2003). A phylogeny of the Australian Sphenomorphus group (Scincidae: Squamata) and the phylogenetic placement of the crocodile skinks (Tribolonotus): Bayesian approaches to assessing congruence and obtaining confidence in maximum likelihood inferred relationships. Molecular Phylogenetics and Evolution, 27, 384–397.PubMedCrossRefGoogle Scholar
  43. Ross, G. J. B. (1984). The smaller cetaceans of the south east coast of southern Africa. Annals of the Cape Provincial Museums (Natural History), 15, 173–410.Google Scholar
  44. Santos, M. B., Pierce, G. J., Herman, J., López, A., Guerra, A., Mente, E., et al. (2001). Feeding ecology of Cuvier’s beaked whale (Ziphius cavirostris): A review with new information on the diet of this species. Journal of the Marine Biological Association of the United Kingdom, 81, 687–694.Google Scholar
  45. Saraiva, A., Faranda, A., Damiano, S., Hermida, M., Santos, M. J., Ventura, C. H., et al. (2007). Six species of Anisakis (Nematoda: Anisakidae) parasites of the black scabbardfish, Aphanopus carbo from NE Atlantic waters: Genetic markers and fish biology. Parassitologia, 49, 229.Google Scholar
  46. Swofford, D. L. (2003). PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Sunderland, MA: Sinauer Associates.Google Scholar
  47. Swofford, D. L., & Selander, R. B. A. (1997). Biosys2. A computer program for the analysis of allelic variation genetics. Urbana, IL: University of Illinois.Google Scholar
  48. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.PubMedCrossRefGoogle Scholar
  49. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weigh matrix choice. Nucleic Acids Research, 22, 4673–4680.PubMedCrossRefGoogle Scholar
  50. Umehara, A., Kawakami, Y., Araki, J., & Uchida, A. (2007). Molecular identification of the etiological agent of the human anisakiasis in Japan. Parasitology International, 56, 211–215.PubMedCrossRefGoogle Scholar
  51. Umehara, A., Kawakami, Y., Araki, J., & Uchida, A. (2008). Multiplex PCR for the identification of Anisakis simplex sensu stricto, Anisakis pegreffii and the other anisakid nematodes. Parasitology International, 57, 49–53.PubMedCrossRefGoogle Scholar
  52. Valentini, A., Mattiucci, S., Bondanelli, P., Webb, S. C., Mignucci-Giannone, A., Colom-Llavina, M. M., et al. (2006). Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox-2 sequences, and comparison with allozyme data. Journal of Parasitology, 92, 156–166.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Simonetta Mattiucci
    • 1
  • Michela Paoletti
    • 1
    • 2
  • Stephen C. Webb
    • 3
  1. 1.Department of Public Health Sciences (DSSP), Section of Parasitology‘Sapienza—University of Rome’RomeItaly
  2. 2.Department of Ecology and Sustainable Economic Development (DECOS)Tuscia UniversityViterboItaly
  3. 3.Cawthron InstituteNelsonNew Zealand

Personalised recommendations