Advertisement

Synthese

pp 1–28 | Cite as

A new objective definition of quantum entanglement as potential coding of intensive and effective relations

  • C. de RondeEmail author
  • C. Massri
Article
  • 4 Downloads

Abstract

In de Ronde and Massri (Against ‘particle metaphysics’ and ‘collapses’ within the definition of quantum entanglement, submitted, 2019b) it was argued against the orthodox definition of quantum entanglement in terms of pure and separable states. In this paper we attempt to discuss how the logos categorical approach to quantum mechanics (de Ronde and Massri in Int J Theor Phys, 2018. https://doi.org/10.1007/s10773-018-3914-0; in Int J Theor Phys 58:1968–1988, 2019a) is able to provide an objective formal account of the notion of entanglement—completely independent of both purity and separability—in terms of the potential coding of intensive relations and effective relations. We will show how our novel redefinition allows us to provide an anschaulich content to the notion of entanglement, erasing in this way the “spookiness” still present within its orthodox understanding in terms of space-time separated collapse particles.

Keywords

Logos Entanglement Potential coding Intensive relation Effective relation 

Notes

Acknowledgements

We want to thank an anonymous referee for her/his insightful remarks and comments. This work was partially supported by the following grants: FWO Project G.0405.08 and FWO-research community W0.030.06. CONICET RES. 4541-12 and the Project PIO-CONICET-UNAJ (15520150100008CO) “Quantum Superpositions in Quantum Information Processing”.

References

  1. Adámek, J., & Herrlich, H. (1986). Cartesian closed categories, quasitopoi and topological universes. Commentationes Mathaticae Universitatis Carolinae, 27, 235–257.Google Scholar
  2. Aerts, D. (1984). How do we have to change quantum mechanics in order to describe separated systems. In S. Diner, D. Fargue, G. Lochak, & F. Selerri (Eds.), The wave–particle dualism (pp. 419–431). Dordrecht: Springer.CrossRefGoogle Scholar
  3. Bokulich, P., & Bokulich, A. (2005). Niels Bohr’s generalization of classical mechanics. Foundations of Physics, 35, 347–371.CrossRefGoogle Scholar
  4. Borges, J. L. (1989). Obras completas: Tomo I, María Kodama y Emecé (Eds.), Barcelona. Translated by James Irby from Labyrinths, 1962.Google Scholar
  5. Born, M. (1971). The Born-Einstein Letters. New York: Walker and Company.Google Scholar
  6. Clifton, R. K. (1995). Why modal interpretations of quantum mechanics must abandon classical reasoning about physical properties. International Journal of Theoretical Physics, 34, 1302–1312.CrossRefGoogle Scholar
  7. Clifton, R. K. (1996). The properties of modal interpretations of quantum mechanics. British Journal for the Philosophy of Science, 47, 371–398.CrossRefGoogle Scholar
  8. de la Torre, A. C., Goyeneche, D., & Leitao, L. (2010). Entanglement for all quantum states. European Journal of Physics, 31, 325–332.CrossRefGoogle Scholar
  9. de Ronde, C. (2016a). Probabilistic knowledge as objective knowledge in quantum mechanics: Potential immanent powers instead of actual properties. In D. Aerts, C. de Ronde, H. Freytes, & R. Giuntini (Eds.), Probing the meaning of quantum mechanics: Superpositions, semantics, dynamics and identity (pp. 141–178). Singapore: World Scientific.CrossRefGoogle Scholar
  10. de Ronde, C. (2016b). Representational realism, closed theories and the quantum to classical limit. In R. E. Kastner, J. Jeknic-Dugic, & G. Jaroszkiewicz (Eds.), Quantum structural studies (pp. 105–135). Singapore: World Scientific.Google Scholar
  11. de Ronde, C. (2017). Causality and the modeling of the measurement process in quantum theory. Disputatio, 9, 657–690.CrossRefGoogle Scholar
  12. de Ronde, C. (2018). Quantum superpositions and the representation of physical reality beyond measurement outcomes and mathematical structures. Foundations of Science, 23, 621–648.CrossRefGoogle Scholar
  13. de Ronde, C. (2019a). Immanent powers versus causal powers (propensities, latencies and dispositions) in quantum mechanics. In D. Aerts, M. L. Dalla Chiara, C. de Ronde, & D. Krause (Eds.), Probing the meaning of quantum mechanics: Information, contextuality, relationalism and entanglement (pp. 121–157). Singapore: World Scientific.CrossRefGoogle Scholar
  14. de Ronde, C. (2019b). Unscrambling the omelette of quantum contextuality (part I): Preexistent properties or measurement outcomes? Foundations of Science,.  https://doi.org/10.1007/s10699-019-09578-8.CrossRefGoogle Scholar
  15. de Ronde, C., & Bontems, V. (2011). La notion d’entité en tant qu’obstacle épistémologique: Bachelard, la mécanique quantique et la logique. Bulletin des Amis de Gaston Bachelard, 13, 12–38.Google Scholar
  16. de Ronde, C., & Massri, C. (2019a). Against ‘particle metaphysics’ and ‘collapses’ within the definition of quantum entanglement. arXiv:1808.10030 [quant-ph]. (submitted).
  17. de Ronde, C., Freytes, H., & Sergioli, G. (2019b). Quantum probability: A reliable tool for an agent or a source of reality. Synthese,.  https://doi.org/10.1007/s11229-019-02177-x.CrossRefGoogle Scholar
  18. de Ronde, C., & Massri, C. (2017). Kochen–Specker theorem, physical invariance and quantum individuality. Cadernos da Filosofia da Ciencia, 2, 107–130.Google Scholar
  19. de Ronde, C., & Massri, C. (2018). The logos categorical approach to quantum mechanics: I. Kochen–Specker contextuality and global intensive valuations. International Journal of Theoretical Physics,.  https://doi.org/10.1007/s10773-018-3914-0.CrossRefGoogle Scholar
  20. de Ronde, C., & Massri, C. (2019a). The logos categorical approach to quantum mechanics: II. Quantum superpositions. International Journal of Theoretical Physics, 58, 1968–1988.CrossRefGoogle Scholar
  21. de Ronde, C., Fernandez Moujan, R., & Massri, C. (2019b). Taking Mermin’s relational interpretation beyond Cabello’s and Seevincks’ no-go theorems. arXiv:1810.10125 [physics.hist-ph]. (submitted).
  22. Deutsch, D. (2004). The beginning of infinity. Explanations that transform the world. Toronto, ON: Viking.Google Scholar
  23. Deutsch, D. (2016). The logic of experimental tests, particularly of Everettian quantum theory. Studies in History and Philosophy of Modern Physics, 55, 24–33.CrossRefGoogle Scholar
  24. Dieks, D. (1988). The formalism of quantum theory: An objective description of reality. Annalen der Physik, 7, 174–190.CrossRefGoogle Scholar
  25. Dieks, D. (2009). Objectivity in perspective: Relationism in the interpretation of quantum mechanics. Foundations of Physics, 39, 760–775.CrossRefGoogle Scholar
  26. Dieks, D. (2010). Quantum mechanics, chance and modality. Philosophica, 83, 117–137.Google Scholar
  27. Dieks, D. (2018). Quantum mechanics and perspectivalism. In O. Lombardi, S. Fortín, C. López, & F. Holik (Eds.), Quantum worlds perspectives on the ontology of quantum mechanics (pp. 51–70). Cambridge: Cambridge University Press.Google Scholar
  28. Diestel, R. (2010). Graph theory. Heidelberg: Springer.CrossRefGoogle Scholar
  29. Einstein, A. (1949). Remarks concerning the essays brought together in this co-operative volume. In P. A. Schlipp (Ed.), Albert Einstein. Philosopher-Scientist (pp. 665–689). New York: MJF Books.Google Scholar
  30. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description be considered complete? Physical Review, 47, 777–780.CrossRefGoogle Scholar
  31. Healey, R. (2018). Quantum theory and the limits of objectivity. Foundations of Physics, 48, 1568–1589.CrossRefGoogle Scholar
  32. Heisenberg, W. (1971). Physics and beyond. New York: Harper & Row.Google Scholar
  33. Heisenberg, W. (1973). Development of concepts in the history of quantum theory. In J. Mehra (Ed.), The Physicist’s conception of nature (pp. 264–275). Dordrecht: Reidel.CrossRefGoogle Scholar
  34. Hempel, C. G. (1965). Scientific explanation. Essays in Philosophy of Science. New York: The Free Press.Google Scholar
  35. Hughes, R. I. G. (1992). The structure and interpretation of quantum mechanics. Harvard: Harvard University Press.Google Scholar
  36. Jauch, J.-M. (1968). Foundations of quantum mechanics. Boston: Addison-Wesley.Google Scholar
  37. Jaynes, E. T. (1990). Probability in quantum theory. In W. H. Zurek (Ed.), Complexity, entropy, and the physics of information (pp. 381–404). Boston, MA: Addison-Wesley.Google Scholar
  38. Laurikainen, K. V. (1988). Beyond the atom, the philosophical thought of Wolfgang Pauli. Berlin: Springer.Google Scholar
  39. Li, J.-L., & Qiao, C.-F. (2018). A necessary and sufficient criterion for the separability of quantum state. Scientific Reports, 8, 1442.CrossRefGoogle Scholar
  40. Osnaghi, S., Freitas, F., & Freire, O. (2009). The origin of the Everettian heresy. Studies in History and Philosophy of Modern Physics, 40, 97–123.CrossRefGoogle Scholar
  41. Pauli, W. (1994). Albert Einstein and the development of physics. In C. Enz & K. von Meyenn (Eds.), Writings on physics and philosophy (Chapter 13). Berlin: Springer.CrossRefGoogle Scholar
  42. Popper, K. (1962). Conjectures and refutations. New York: Basic Books.Google Scholar
  43. Przibram, K. (Ed.). (1967). Letters on wave mechanics. New York: Philosophical Library.Google Scholar
  44. Schrödinger, E. (1935a). The present situation in quantum mechanics. Naturwiss, 23, 807–812. Translated to English in Quantum Theory and Measurement, J.A. Wheeler and W.H. Zurek (Eds.), 1983, Princeton University Press, Princeton.Google Scholar
  45. Schrödinger, E. (1935b). Discussion of probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 31, 555–563.CrossRefGoogle Scholar
  46. Schrödinger, E. (1935c). Probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 32, 446–452.CrossRefGoogle Scholar
  47. Weinberg, S. (2011). The Fabric of the Cosmos: Quantum Leap (3 of 4), science documentary television series NOVA for PBS, Original air. https://www.youtube.com/watch?v=4Z8Ma2YT8vY30:07. Accessed 16 Nov 2011.

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Philosophy Institute Dr. A. KornUniversity of Buenos Aires - CONICETBuenos AiresArgentina
  2. 2.Center Leo Apostel for Interdisciplinary Studies, Foundations of the Exact SciencesVrije Universiteit BrusselBrusselsBelgium
  3. 3.Institute of EngineeringNational University Arturo JauretcheBuenos AiresArgentina
  4. 4.Institute of Mathematical Investigations Luis A. Santaló, UBA - CONICETBuenos AiresArgentina
  5. 5.University CAECEBuenos AiresArgentina

Personalised recommendations