Advertisement

Synthese

pp 1–21 | Cite as

The nature of entailment: an informational approach

  • Yaroslav ShramkoEmail author
  • Heinrich Wansing
S.I.: Varieties of Entailment
  • 38 Downloads

Abstract

In this paper we elaborate a conception of entailment based on what we call the Ackermann principle, which explicates valid entailment through a logical connection between (sets of) sentences depending on their informational content. We reconstruct Dunn’s informational semantics for entailment on the basis of Restall’s approach, with assertion and denial as two independent (primary) speech acts, by introducing the notion of a ‘position description’. We show how the machinery of position descriptions can effectively be used to define the positive and the negative information carried by sentences of a given language and to present a formalized version of the Ackermann principle as an inclusion relationship between the informational contents of the conclusions and the premises of a valid entailment. Being so interpreted, the entailment relation exhibits certain properties, including the property of transitivity (and, more generally, admissibility of the cut rule). Whereas properties such as Anderson and Belnap’s variable sharing property or Parry’s proscriptive principle are normally presented as imposing a relevance requirement on valid entailment, the suggested formalization of the Ackermann principle supports all of Gentzen’s structural rules, including weakening, a rule that is normally given up in sequent-style proof systems for relevance logics. In this way we propose an Ackermann-inspired explication of the nature of entailment as a relation between the informational contents of sentences.

Keywords

Entailment relation Ackermann principle Informational content Structural inference rules 

Notes

Acknowledgements

We would like to thank two anonymous referees for their constructive criticism and useful suggestions.

References

  1. Ackermann, W. (1956). Begründung einer strengen Implikation. Journal of Symbolic Logic, 21, 113–128.CrossRefGoogle Scholar
  2. Almukdad, A., & Nelson, D. (1984). Constructible falsity and inexact predicates. Journal of Symbolic Logic, 49, 231–233.CrossRefGoogle Scholar
  3. Anderson, A. R., & Belnap, N. D. (1975). Entailment: The logic of relevance and necessity (Vol. I). Princeton, NJ: Princeton University Press.Google Scholar
  4. Ashby, W. R. (1956). An introduction to cybernetics. New York: Wiley.CrossRefGoogle Scholar
  5. Bar-Hillel, Y., & Carnap, R. (1953). Semantic information. British Journal for the Philosophy of Science, 4, 147–157.CrossRefGoogle Scholar
  6. Barwise, J., & Perry, J. (1985). Shifting situations and shaken attitudes: An interview with Barwise and Perry. Linguistics and Philosophy, 8, 105–161.CrossRefGoogle Scholar
  7. Baylis, C. A. (1931). Implication and subsumption. Monist, 41, 392–399.CrossRefGoogle Scholar
  8. Belnap, N. D. (1982). Display logic. Journal of Philosophical Logic, 11, 375–417.Google Scholar
  9. Blanshard, B. (1939). The nature of thought. London: Allen and Unwin.Google Scholar
  10. Blasio, C., Marcos, J., & Wansing, H. (2017). An inferentially many-valued two-dimensional notion of entailment. Bulletin of the Section of Logic, 46, 233–262.Google Scholar
  11. Brillouin, L. (1964). Scientific uncertainty and information. New York: Academic Press.Google Scholar
  12. Burgess, J. (2009). Philosophical logic. Princeton: Princeton University Press.CrossRefGoogle Scholar
  13. Carnap, R., & Bar-Hillel, Y. (1952). An outline of a theory of semantic information. MIT Research Laboratory of Electronics, technical report, no. 247.Google Scholar
  14. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41, 347–385.CrossRefGoogle Scholar
  15. Cockett, J. R. B., & Seely, R. A. G. (2017). Proof theory of the cut rule. In E. Landry (Ed.), Categories for the working philosopher (pp. 223–261). Oxford: Oxford University Press.Google Scholar
  16. De, M., & Omori, H. (2018). There is more to negation than modality. Journal of Philosophical Logic, 47, 281–299.CrossRefGoogle Scholar
  17. Došen, K. (1988). Sequent systems and groupoid models I. Studia Logica, 47, 353–389.CrossRefGoogle Scholar
  18. Došen, K. (1997). Logical consequence: A turn in style. In M. L. D. Chiara, et al. (Eds.), Logic and scientific methods: Volume one of the tenth international congress of logic, methodology and philosophy of science (pp. 289–312). Dordrecht: Springer.CrossRefGoogle Scholar
  19. Duncan-Jones, A. E. (1935). Is strict implication the same as entailment? Analysis, 2, 70–78.CrossRefGoogle Scholar
  20. Dunn, J. M. (1966). The algebra of intensional logics. Doctoral dissertation. University of Pittsburgh. Ann Arbor, University Microfilms.Google Scholar
  21. Dunn, J. M. (1976). Intuitive semantics for first-degree entailment and coupled trees. Philosophical Studies, 29, 149–168.CrossRefGoogle Scholar
  22. Dunn, J. M. (1986). Relevance logic and entailment. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic, volume III. Alternatives to classical logic. Synthese library (Vol. 166, pp. 117–224). Dordrecht: D. Reidel Publishing Company.Google Scholar
  23. Dunn, J. M., & Zhou, C. (2005). Negation in the context of gaggle theory. Studia Logica, 80, 235–264.CrossRefGoogle Scholar
  24. Epstein, R. (1979). Relatedness and implication. Philosophical Studies, 29, 149–168.Google Scholar
  25. Ferguson, T. M. (2017). Meaning and proscription in formal logic. Variations on the propositional logic of William T. Parry. Dordrecht: Springer.CrossRefGoogle Scholar
  26. Font, J. M. (1997). Belnap’s four-valued logic and De Morgan lattices. Logic Journal of the IGPL, 5, 413–440.CrossRefGoogle Scholar
  27. Frankowski, S. (2004). Formalization of a plausible inference. Bulletin of the Section of Logic, 33, 41–52.Google Scholar
  28. Geach, P. T. (1958). Entailment. Proceedings of the Aristotelian Society, 32, 157–172.Google Scholar
  29. Gentzen, G. (1935). Untersuchungen über das logische Schließen. I. Mathematische Zeitschrift, 39, 176–210.CrossRefGoogle Scholar
  30. Hacking, I. (1979). What is logic? Journal of Philosophy, 76, 285–319.CrossRefGoogle Scholar
  31. Hertz, P. (1929). Über Axiomensysteme für beliebige Satzsysteme. Mathematische Annalen, 101, 457–514.CrossRefGoogle Scholar
  32. Horn, L. R., & Wansing, H. (2017). Negation. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2017 Edition). https://plato.stanford.edu/archives/spr2017/entries/negation/.
  33. Humberstone, L. (2000). The revival of rejective negation. Journal of Philosophical Logic, 29, 331–381.CrossRefGoogle Scholar
  34. Iemhoff, R. (2016). Consequence relations and admissible rules. Journal of Philosophical Logic, 45, 327–348.CrossRefGoogle Scholar
  35. Ilić, M. (2016). The proof-theoretical analysis of contraction-less relevant logics. Bulletin of the International Mathematical Virtual Institue, 6, 1–11.Google Scholar
  36. Israel, D., & Perry, J. (1990). What is information? In P. P. Hanson (Ed.), Information, language, and cognition (pp. 1–19). Vancouver: University of British Columbia Press.Google Scholar
  37. Kleene, S. C. (1967). Mathematical logic. New York: Wiley.Google Scholar
  38. Kneale, W., & Kneale, M. (1962). The development of logic. London: Duckworth.Google Scholar
  39. Lewis, C. I. (1917). The issues concerning material implication. Journal of Philosophy, 14, 350–356.Google Scholar
  40. Lewy, C. (1958). Entailment. Proceedings of the Aristotelian Society, 32, 123–142.CrossRefGoogle Scholar
  41. Łoś, J., & Suszko, R. (1958). Remarks on sentential logics. Indagationes mathematicae, 20, 177–183.CrossRefGoogle Scholar
  42. Mares, E. (1996). Relevant logic and the theory of information. Synthese, 109, 345–360.CrossRefGoogle Scholar
  43. Mares, E., & Paoli, F. (2014). Logical consequence and the paradoxes. Journal of Philosophical Logic, 43, 439–469.CrossRefGoogle Scholar
  44. Martin, B. (2016). Rejectivism and the challenge of pragmatic contradictions. Disputatio, 43, 253–268.CrossRefGoogle Scholar
  45. McCall, S. (1975). Connexive implication, §29.8. In A. R. Anderson & N. D. Belnap (Eds.), Entailment. The logic of relevance and necessity (Vol. I, pp. 434–446). Princeton: Princeton University Press.Google Scholar
  46. McCall, S. (2012). A history of connexivity. In D. M. Gabbay, et al. (Eds.), Handbook of the history of logic. Logic: A history of its central concepts (Vol. 11, pp. 415–449). Amsterdam: Elsevier.CrossRefGoogle Scholar
  47. Nelson, E. J. (1930). Intensional relations. Mind, 39, 440–453.CrossRefGoogle Scholar
  48. Paoli, F. (2002). Substructural logics: A primer. New York: Springer.CrossRefGoogle Scholar
  49. Priest, G. (2002). Paraconsistent logic. In D. M. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (2nd ed., Vol. 6, pp. 287–393). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  50. Read, S. (1988). Relevant logic: A philosophical examination of inference. New York: Wiley.Google Scholar
  51. Restall, G. (1996). Information flow and relevant logics. In J. Seligman & D. Westerståhl (Eds.), Logic, language and computation (pp. 463–477). Stanford: CSLI Publications.Google Scholar
  52. Restall, G. (2000). An introduction to substructural logics. London: Routlege.CrossRefGoogle Scholar
  53. Restall, G. (2005). Multiple conclusions. In P. Hájek, L. Valdés-Villanueva, & D. Westerståhl (Eds.), Logic, methodology and philosophy of science: Proceedings of the twelfth international congress (pp. 189–205). London: College Publications.Google Scholar
  54. Restall, G. (2009). Truth values and proof theory. Studia Logica, 92, 241–264.CrossRefGoogle Scholar
  55. Restall, G. (2013). Assertion, denial, and non-classical theories. In K. Tanaka, F. Berto, E. Mares, & F. Paoli (Eds.), Paraconsistency: Logic and applications (pp. 81–100). Dordrecht: Springer.CrossRefGoogle Scholar
  56. Ripley, D. (2015). Anything goes. Topoi, 34, 25–36.CrossRefGoogle Scholar
  57. Routley, R. (1978). Semantics for connexive logics. I. Studia Logica, 37, 393–412.CrossRefGoogle Scholar
  58. Routley, R., & Routley, V. (1972). The semantics of first degree entailment. Noûs, 6, 335–359.CrossRefGoogle Scholar
  59. Scheffler, U., & Shramko, Y. (1998). Eine Generelle Informationssemantik für Systeme der logischen Folgebeziehung. In K. Wuttich & U. Scheffler (Eds.), Terminigebrauch und Folgebeziehung (pp. 229–247). Berlin: Logos.Google Scholar
  60. Schroeder-Heister, P. (2002). Resolution and the origins of structural reasoning: Early proof-theoretic ideas of Hertz and Gentzen. Bulletin of Symbolic Logic, 8, 246–265.CrossRefGoogle Scholar
  61. Shramko, Y. (2000). American plan for intuitionistic logic 1: An intuitive background. In T. Childers (Ed.), The logica yearbook 1999 (pp. 53–64). Prague: Filosofia.Google Scholar
  62. Shramko, Y., & Wansing, H. (2011). Truth and falsehood. An inquiry into generalized logical values. Berlin: Springer.Google Scholar
  63. Tennant, N. (1987). Anti-realism and logic. Oxford: Clarendon Press.Google Scholar
  64. Tennant, N. (2017). Core logic. Oxford: Oxford University Press.CrossRefGoogle Scholar
  65. Voishvillo, E. K. (1996). A theory of logical relevance. Logique et Analyse, 155–156, 207–228.Google Scholar
  66. Wansing, H. (2016). Connexive logic. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2016 Edition). https://plato.stanford.edu/archives/spr2016/entries/logic-connexive/.
  67. Wansing, H. (1993). The logic of information structures. Springer lecture notes in AI 681. Berlin: Springer.CrossRefGoogle Scholar
  68. Wansing, H. (1994). Sequent systems for normal modal propositional logics. Journal of Logic and Computation, 4, 125–142.CrossRefGoogle Scholar
  69. Wansing, H. (1998). Displaying modal logic. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  70. Wessel, H. (1998). Logik (4th ed.). Berlin: Logos Verlag.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhilosophyKryvyi Rih State Pedagogical UniversityKryvyi RihUkraine
  2. 2.Institute of Philosophy IRuhr University BochumBochumGermany

Personalised recommendations