Advertisement

Synthese

pp 1–28 | Cite as

Everettian theory as pure wave mechanics plus a no-collapse probability postulate

  • Paul Tappenden
Article

Abstract

Proposed derivations of the Born rule for Everettian theory are controversial. I argue that they are unnecessary but may provide justification for a simplified version of the Principal Principle. It’s also unnecessary to replace Everett’s idea that a subject splits in measurement contexts with the idea that subjects have linear histories which partition (Deutsch in Int J Theor Phys 24:1–41, 1985; The Beginning of Infinity. Allen Lane, London, 2011; Saunders and Wallace in Br J Philos Sci 59:293–305, 2008; Saunders, in: Saunders, Barrett, Kent, Wallace (eds) Many worlds? Everett, quantum theory, and reality, Oxford University Press, Oxford, pp 181–205, 2010; Wallace in The emergent multiverse, Oxford University Press, Oxford, 2012, Chapter 7; Wilson in Br J Philos Sci 64:709–737, 2013; The nature of contingency: quantum physics as modal realism, Oxford University Press, Oxford, forthcoming). Linear histories were introduced to provide a concept of pre-measurement uncertainty and I explain why pre-measurement uncertainty for splitting subjects is after all coherent, though not necessary because Everett’s original fission interpretation of branching can arguably be rendered coherent without it, via reference to Vaidman (Int Stud Philos Sci 12:245–66, 1998), Tappenden (Br J Philos Sci 62:99–123, 2011), Sebens and Carroll (Br J Philos Sci 69:25–74, 2018) and McQueen and Vaidman (Stud Hist Philos Mod Phys 66:14–23, 2019). A deterministic and probabilistic quantum mechanics can be made intelligible by replacing the standard collapse postulate with a no-collapse postulate which identifies objective probability with relative branch weight, supplemented by the simplified Principal Principle and some revisionary metaphysics.

Keywords

Everett interpretation Measurement problem Objective probability Mind-brain identity Semantic internalism 

Notes

Acknowledgements

I wish to thank Jeff Barrett, David Deutsch, Douglas Campbell, Andrew F. Knight, John Ponsonby, Douglas Porpora, Simon Saunders, Mauricio Suàrez and David Wallace for useful comments. And in particular two anonymous referees for detailed and searching critiques which led to considerable revision of the original submission.

References

  1. Adlam, E. (2014). The problem of confirmation in the Everett interpretation. Studies in History and Philosophy of Modern Physics,47, 21–32.CrossRefGoogle Scholar
  2. Albert, D. (2010). Probability in the Everett picture. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many Worlds? Everett, quantum theory, and reality (pp. 355–368). Oxford: Oxford University Press.CrossRefGoogle Scholar
  3. Albrecht, A., & Phillips, D. (2014). Origin of probabilities and their application to the multiverse. Physical Review D,90, 123514.CrossRefGoogle Scholar
  4. Barrett, J. A. (1999). The quantum mechanics of minds and worlds. Oxford: Oxford University Press.Google Scholar
  5. Barrett, J. A. (2017). Typical worlds. Studies in History and Philosophy of Modern Physics,58, 31–40.CrossRefGoogle Scholar
  6. Barrett, A., & Byrne, P. (Eds.). (2012). The Everett interpretation of quantum mechanics. Princeton: Princeton University Press.Google Scholar
  7. Beebee, H., & Fisher, A. R. J. (Eds.). (forthcoming). Philosophical letters of David K. Lewis, volume 1: Causation, modality, ontology. Oxford: Oxford University Press.Google Scholar
  8. Burge, T. (1979). Individualism and the mental. Midwest Studies in Philosophy,4(1), 73–121.CrossRefGoogle Scholar
  9. Burge, T. (1982). Other bodies. In A. Woodfield (Ed.), Thought and object. Oxford: Clarendon Press.Google Scholar
  10. Deutsch, D. (1985). Quantum theory as a universal physical theory. International Journal of Theoretical Physics,24, 1–41.CrossRefGoogle Scholar
  11. Deutsch, D. (1999). Quantum theory of probability and decisions. Proceedings of the Royal Society of London,A455, 2911–2923.Google Scholar
  12. Deutsch, D. (2011). The beginning of infinity. London: Allen Lane.Google Scholar
  13. Einstein, A. (1927). Translation of a letter to the Royal Society for the bicentenary commemoration of Isaac Newton’s death. Nature,119, 467.CrossRefGoogle Scholar
  14. Everett, H., III. (1957). ‘Relative state’ formulation of quantum mechanics. Reviews of Modern Physics,29, 454–462.CrossRefGoogle Scholar
  15. Fraïssé, R. (1974). Eassai sur la logique de l’indeterminisme et la ramification de l’espace-temps. Synthese,29, 27–54.CrossRefGoogle Scholar
  16. Fraïssé, R. (1982). Quelques arguments en faveur de l’interprétation de la mécanique quantique par la ramification d’Everett. Synthese,50, 325–357.CrossRefGoogle Scholar
  17. Fraïssé, R. (1986). La ramification selon Everett: une interprétation critiquée mais logiquement impeccable de la mécanique quantique. International Logic Review,33, 70–93.Google Scholar
  18. Greaves, H. (2004). Understanding Deutsch’s probability in a deterministic multiverse. Studies in History and Philosophy of Modern Physics,35, 423–456.CrossRefGoogle Scholar
  19. Hawley, K. (2001). How things persist. Oxford: oxford University Press.Google Scholar
  20. Lewis, D. K. (1976). Survival and identity. In A. Rorty (Ed.), The identity of persons (pp. 17–40). Oakland: University of California Press.Google Scholar
  21. Lewis, D. K. (1980). A subjectivist’s guide to objective chance. In R. C. Jeffrey (Ed.), Studies in inductive logic and probability (Vol. 2, pp. 263–293). Berkeley: University of California Press.Google Scholar
  22. Lewis, D. K. (1986). On the plurality of worlds. Oxford: Blackwell.Google Scholar
  23. Lockwood, M. (1989). Mind, brain and the quantum. Oxford: Blackwell.Google Scholar
  24. Maudlin, T. (2014). Critical study David Wallace, ‘The Emergent Multiverse: Quantum Theory According to the Everett Interpretation’. Noûs,48, 794–808.CrossRefGoogle Scholar
  25. McQueen, K. J., & Vaidman, L. (2019). In defence of the self-location uncertainty account of probability in the many-worlds interpretation. Studies in History and Philosophy of Modern Physics,66, 14–23.CrossRefGoogle Scholar
  26. Papineau, D. (1995). Probabilities and the many minds interpretation of quantum mechanics. Analysis,55, 239–246.CrossRefGoogle Scholar
  27. Papineau, D. (2003). Why you don’t want to get in the box with Schrödinger’s cat. Analysis,63, 51–58.CrossRefGoogle Scholar
  28. Papineau, D. (2010). A fair deal for Everettians. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many worlds? Everett, quantum theory, and reality (pp. 206–226). Oxford: Oxford University Press.CrossRefGoogle Scholar
  29. Putnam, H. (1975). The meaning of ‘meaning’. In K. Gunderson (Ed.), Language, mind and knowledge (pp. 131–193). Minneapolis: University of Minnesota Press.Google Scholar
  30. Putnam, H. (1981). Reason, truth and history. Cambridge: Cambridge Unversity Press.CrossRefGoogle Scholar
  31. Russell, B. (1954). Nightmares of eminent persons. London: The Bodley Head.Google Scholar
  32. Saunders, S. (1993). Decoherence, relative states and evolutionary adaptation. Foundations of Physics,23, 1553–1585.CrossRefGoogle Scholar
  33. Saunders, S. (2010). Chance in the Everett interpretation. In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many worlds? Everett, quantum theory, and reality (pp. 181–205). Oxford: Oxford University Press.CrossRefGoogle Scholar
  34. Saunders, S., & Wallace, D. (2008). Branching and uncertainty. British Journal for the Philosophy of Science,59, 293–305.CrossRefGoogle Scholar
  35. Sawyer, S. (2018). The importance of concepts. Proceedings of the Aristotelian Society,118, 127–147.CrossRefGoogle Scholar
  36. Sebens, C. T., & Carroll, S. M. (2018). Self-locating uncertainty and the origin of probability in Everettian quantum mechanics. British Journal for the Philosophy of Science,69, 25–74.Google Scholar
  37. Sider, T. (1996). All the world’s a stage. Australasian Journal of Philosophy,74, 433–453.CrossRefGoogle Scholar
  38. Sider, T. (2001). Four dimensionalism. Oxford: Oxford University Press.CrossRefGoogle Scholar
  39. Suárez, M. (2018). The chances of propensities. British Journal for the Philosophy of Science,69, 1155–1177.Google Scholar
  40. Tappenden, P. (2008). Saunders and Wallace on Everett and Lewis. British Journal for the Philosophy of Science,59, 307–314.CrossRefGoogle Scholar
  41. Tappenden, P. (2011). Evidence and uncertainty in Everett’s multiverse. British Journal for the Philosophy of Science,62, 99–123.CrossRefGoogle Scholar
  42. Tappenden, P. (2017). Objective probability and the mind–body relation. Studies in History and Philosophy of Modern Physics,57, 8–16.CrossRefGoogle Scholar
  43. Tappenden, P. (2019). Everett’s multiverse and the world as wavefunction. Quantum Reports,1, 119–129.CrossRefGoogle Scholar
  44. Vaidman, L. (1998). On schizophrenic experiences of the neutron or why we should believe in the many-worlds interpretation of quantum theory. International Studies in the Philosophy of Science,12, 245–266.CrossRefGoogle Scholar
  45. Vaidman, L. (2002). Many-worlds interpretation of quantum mechanics. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/sum2002/entries/qm-manyworlds/#6.4. Accessed 13 Nov 2019.
  46. Wallace, D. (2012). The emergent multiverse. Oxford: Oxford University Press.CrossRefGoogle Scholar
  47. Wheeler, J. A. (1957). Assessment of Everett’s ‘relative state’ formulation of quantum theory. Reviews of Modern Physics,29, 463–465.CrossRefGoogle Scholar
  48. Wilson, A. (2013). Objective probability in Everettian quantum mechanics. British Journal for the Philosophy of Science,64, 709–737.CrossRefGoogle Scholar
  49. Wilson, A. (forthcoming). The nature of contingency: Quantum physics as modal realism. Oxford: Oxford University Press.Google Scholar
  50. Yli-Vakkuri, J. (2018). Semantic externalism without thought experiments. Analysis,78, 81–89.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.MarseilleFrance

Personalised recommendations