Advertisement

Synthese

pp 1–19 | Cite as

Scientific representation and dissimilarity

  • Brandon BoeschEmail author
Unrealistic Models
Part of the following topical collections:
  1. What to Make of Highly Unrealistic Models

Abstract

In this essay, I examine the role of dissimilarity in scientific representation. After briefly reviewing some of the philosophical literature which places a strong emphasis on the role of similarity, I turn to examine some work from Carroll and Borges which demonstrates that perfect similarity is not valuable in the representational use of maps. Expanding on this insight, I go on to argue that this shows that dissimilarity is an important part of the representational use of maps—a point I then extend to the case of scientific representation. Relying on some work from Latour, I argue that dissimilarity plays an essential role in representational practice, by providing novel forms of manipulation and use which affords the achievement of various epistemic and nonepistemic aims. After showing how this point connects to some other literature on scientific representation, I discuss some examples of the value of dissimilarity in the use of representational vehicles. Overall, I argue that to understand scientific representation, we will need to consider more than just similarity. We will need to explore dissimilarities as well.

Keywords

Scientific representation Models Dissimilarity Similarity Abstraction Idealization 

Notes

Compliance with ethical standards

Conflict of interest

The author declares he has no conflicts of interest.

References

  1. Ambrosio, C. (2014). Iconic representations and representative practices. International Studies in the Philosophy of Science, 28(3), 255–275.  https://doi.org/10.1080/02698595.2014.959831.CrossRefGoogle Scholar
  2. Bartels, A. (2006). Defending the structural concept of representation. Theoria, 21(1), 7–19.Google Scholar
  3. Batterman, R. W., & Rice, C. C. (2014). Minimal model explanations. Philosophy of Science, 81(3), 349–376.CrossRefGoogle Scholar
  4. Boesch, B. (2015). Scientific representation. In Internet encyclopedia of philosophy. http://www.iep.utm.edu/sci-repr/.
  5. Boesch, B. (2017). There is a special problem of scientific representation. Philosophy of Science, 84(5), 970–981.  https://doi.org/10.1086/693989.CrossRefGoogle Scholar
  6. Boesch, B. (2019). The means-end account of scientific, representational actions. Synthese, 196(6), 2305–2322.  https://doi.org/10.1007/s11229-017-1537-2.CrossRefGoogle Scholar
  7. Borges, J. L. (1960). Del Rigor En La Ciencia. In El Hacedor. Buenos Aires: Emecé Editores, S. A.Google Scholar
  8. Bueno, O. (1997). Empirical adequacy: A partial structures approach. Studies in History and Philosophy of Science Part A, 28(4), 585–610.CrossRefGoogle Scholar
  9. Bueno, O., & French, S. (2011). How theories represent. The British Journal for the Philosophy of Science, 62(4), 857–894.CrossRefGoogle Scholar
  10. Carroll, L. (1994). The complete works of Lewis Carroll. New York: Barnes and Noble Books.Google Scholar
  11. Chakravartty, A. (2010). Informational versus functional theories of scientific representation. Synthese, 172(2), 197–213.CrossRefGoogle Scholar
  12. Contessa, G. (2007). Scientific representation, interpretation, and surrogative reasoning. Philosophy of Science, 74(1), 48–68.CrossRefGoogle Scholar
  13. Contessa, G. (2011). Scientific models and representation. In S. French & J. Saatsi (Eds.), The continuum companion to philosophy of science (pp. 120–137). New York: Bloomsbury.Google Scholar
  14. Costa, D., Newton, C. A., & French, S. (2003). Science and partial truth: A unitary approach to models and scientific reasoning. New York: Oxford University Press.CrossRefGoogle Scholar
  15. Decock, L., & Douven, I. (2011). Similarity after Goodman. Review of Philosophy and Psychology, 2(1), 61–75.  https://doi.org/10.1007/s13164-010-0035-y.CrossRefGoogle Scholar
  16. Eco, U. (1995). How to travel with a Salmon & other essays. Boston: HMH.Google Scholar
  17. Fang, W. (2017). Holistic modeling: An objection to Weisberg’s weighted feature-matching account. Synthese, 194(5), 1743–1764.  https://doi.org/10.1007/s11229-016-1018-z.CrossRefGoogle Scholar
  18. Foster, J. E. (1971). History and description of the Mississippi basin model. U.S. Army Corp of Engineers Waterways Experiment Station.Google Scholar
  19. Van Fraassen, B. (1980). The scientific image. New York: Oxford University Press.CrossRefGoogle Scholar
  20. French, S. (2003). A model-theoretic account of representation (or, I don’t know much about art…but i know it involves isomorphism). Philosophy of Science, 70(5), 1472–1483.  https://doi.org/10.1086/377423.CrossRefGoogle Scholar
  21. French, S., & Ladyman, J. (1999). Reinflating the semantic approach. International Studies in the Philosophy of Science, 13(2), 103–121.CrossRefGoogle Scholar
  22. Frigg, R. (2006). Scientific representation and the semantic view of theories. Theoria, 21(1), 49–65.Google Scholar
  23. Frigg, R. (2010). Models and fiction. Synthese, 172(2), 251–268.CrossRefGoogle Scholar
  24. Frigg, R., & Nguyen, J. (2016a). Scientific representation. In E. N. Zalta (Eds.), The Stanford encyclopedia of philosophy. https://plato.stanford.edu/archives/win2016/entries/scientific-representation/.
  25. Frigg, R., & Nguyen, J. (2016b). The fiction view of models reloaded. The Monist, 99(3), 225–242.CrossRefGoogle Scholar
  26. Frisch, M. (2015). Users, structures, and representation. British Journal for the Philosophy of Science, 66(2), 285–306.  https://doi.org/10.1093/bjps/axt032.CrossRefGoogle Scholar
  27. Gärdenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge: MIT Press.CrossRefGoogle Scholar
  28. Gelfert, A. (2011). Mathematical formalisms in scientific practice: From denotation to model-based representation. Studies in History and Philosophy of Science Part A, 42(2), 272–286.CrossRefGoogle Scholar
  29. Gelfert, A. (2016). How to do science with models. New York: Springer.CrossRefGoogle Scholar
  30. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  31. Giere, R. N. (2004). How models are used to represent reality. Philosophy of Science, 71(5), 742–752.CrossRefGoogle Scholar
  32. Giere, R. N. (2010). An agent-based conception of models and scientific representation. Synthese, 172(2), 269–281.CrossRefGoogle Scholar
  33. Godfrey-Smith, P. (2009a). Abstractions, idealizations, and evolutionary biology. In A. Barberousse, M. Morange, & T. Pradeu (Eds.), Mapping the future of biology (pp. 47–56). Berlin: Springer.CrossRefGoogle Scholar
  34. Godfrey-Smith, P. (2009b). Models and fictions in science. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 143(1), 101–116.CrossRefGoogle Scholar
  35. Goodman, N. (1976). Languages of art: An approach to a theory of symbols (2d ed.). Indianapolis: Hackett.Google Scholar
  36. Hardy, G. H. (1908). Mendelian proportions in a mixed population. Science, 28(706), 49–50.CrossRefGoogle Scholar
  37. Hughes, R. I. G. (1997). Models and representation. Philosophy of Science, 64, S325–S336.CrossRefGoogle Scholar
  38. Jebeile, J., & Kennedy, A. G. (2015). Explaining with models: The role of idealizations. International Studies in the Philosophy of Science, 29(4), 383–392.CrossRefGoogle Scholar
  39. Jones, M. R. (2005). Idealization and abstraction: A framework. In N. Cartwright & M. R. Jones (Eds.), Idealization XII: Correcting the model idealization and abstraction in the sciences (pp. 173–217). Leiden: Brill.CrossRefGoogle Scholar
  40. Jones, M. R., & Cartwright, N. (2005). Idealization XII: Correcting the model: Idealization and abstraction in the sciences. Amsterdam: Rodopi.CrossRefGoogle Scholar
  41. Knuuttila, T. (2011). Modelling and representing: An artefactual approach to model-based representation. Studies in History and Philosophy of Science Part A, 42(2), 262–271.  https://doi.org/10.1016/j.shpsa.2010.11.034.CrossRefGoogle Scholar
  42. Knuuttila, T., & Loettgers, A. (2012). The productive tension: Mechanisms vs. templates in modeling the phenomena. In P. Humphreys & C. Imbert (Eds.), Models, simulations, and representations (pp. 2–24).Google Scholar
  43. Knuuttila, T., & Loettgers, A. (2017). Modelling as indirect representation? The Lotka–Volterra model revisited. The British Journal for the Philosophy of Science, 68(4), 1007–1036.Google Scholar
  44. Kralemann, B., & Lattmann, C. (2013). Models as icons: Modeling models in the semiotic framework of Peirce’s theory of signs. Synthese, 190(16), 3397–3420.CrossRefGoogle Scholar
  45. Latour, B. (1999). Pandora’s hope: Essays on the reality of science studies. Cambridge: Harvard University Press.Google Scholar
  46. Latour, B. (2014). The more manipulations, the better. In C. Coopmans, J. Vertesi, M. E. Lynch, & S. Woolgar (Eds.), Representation in scientific practice revisited. Cambridge: MIT Press.Google Scholar
  47. Levy, A. (2012). Models, fictions, and realism: Two packages. Philosophy of Science, 79(5), 738–748.  https://doi.org/10.1086/667992.CrossRefGoogle Scholar
  48. Levy, A., & Bechtel, W. (2013). Abstraction and the organization of mechanisms. Philosophy of Science, 80(2), 241–261.CrossRefGoogle Scholar
  49. Love, A. C., & Nathan, M. J. (2015). The idealization of causation in mechanistic explanation. Philosophy of Science, 82(5), 761–774.CrossRefGoogle Scholar
  50. Mäki, U. (2011). Models and the locus of their truth. Synthese, 180(1), 47–63.CrossRefGoogle Scholar
  51. Parker, W. (2015). Getting (even more) serious about similarity. Biology and Philosophy, 30(2), 267–276.  https://doi.org/10.1007/s10539-013-9406-y.CrossRefGoogle Scholar
  52. Pero, F., & Suárez, M. (2016). Varieties of misrepresentation and homomorphism. European Journal for Philosophy of Science, 6(1), 71–90.  https://doi.org/10.1007/s13194-015-0125-x.CrossRefGoogle Scholar
  53. Pincock, C. (2005). Overextending partial structures: Idealization and abstraction. Philosophy of Science, 72(5), 1248–1259.CrossRefGoogle Scholar
  54. Pincock, C. (2007). Mathematical idealization. Philosophy of Science, 74(5), 957–967.CrossRefGoogle Scholar
  55. Rueger, A. (2014). Idealized and perspectival representations: Some reasons for making a distinction. Synthese, 191(8), 1831–1845.CrossRefGoogle Scholar
  56. Salis, F. (2019). The new fiction view of models. British Journal for the Philosophy of Science.  https://doi.org/10.1093/bjps/axz015.CrossRefGoogle Scholar
  57. Stern, C. (1943). The Hardy-Weinberg law. Science, 97(2510), 137–138.  https://doi.org/10.1126/science.97.2510.137.CrossRefGoogle Scholar
  58. Suárez, M. (2003). Scientific representation: Against similarity and isomorphism. International Studies in the Philosophy of Science, 17(3), 225–244.  https://doi.org/10.1080/0269859032000169442.CrossRefGoogle Scholar
  59. Suárez, M. (2004). An inferential conception of scientific representation. Philosophy of Science, 71(5), 767–779.  https://doi.org/10.1086/421415.CrossRefGoogle Scholar
  60. Suárez, M. (Ed.). (2008). Fictions in science: Philosophical essays on modeling and idealization. New York: Routledge.Google Scholar
  61. Suárez, M. (2010). Scientific representation. Philosophy Compass, 5(1), 91–101.CrossRefGoogle Scholar
  62. Suárez, M. (2015a). Deflationary representation, inference, and practice. Studies in History and Philosophy of Science Part A, 49, 36–47.  https://doi.org/10.1016/j.shpsa.2014.11.001.CrossRefGoogle Scholar
  63. Suárez, M. (2015b). Representation in science. In P. Humphreys (Ed.), Oxford handbook in philosophy of science (pp. 440–460). New York: Oxford University Press.Google Scholar
  64. Toon, A. (2010). The ontology of theoretical modelling: Models as make-believe. Synthese, 172(2), 301–315.CrossRefGoogle Scholar
  65. Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327.CrossRefGoogle Scholar
  66. Tversky, A., & Gati, I. (1978). Studies of similarity. In E. Rosch & B. Loyd (Eds.), Cognition and categorization. New Jersey: Erlbaum.Google Scholar
  67. Van Fraassen, B. C. (2008). Scientific representation: Paradoxes of perspective. New York: Clarendon Press.CrossRefGoogle Scholar
  68. Vorms, M. (2011). Representing with imaginary models: Formats matter. Studies in History and Philosophy of Science Part A, Model-Based Representation in Scientific Practice, 42(2), 287–295.  https://doi.org/10.1016/j.shpsa.2010.11.036.CrossRefGoogle Scholar
  69. Wagner, D. (2011). Glimpses of unsurveyable maps. In R. Heinrich, E. Nemeth, W. Pichler, & D. Wagner (Eds.), Image and imaging in philosophy, science and the arts (Vol. 2, pp. 365–376). Berlin: De Gruyter.Google Scholar
  70. Weinberg, W. (1908). Uber Den Nachweis Der Vererbung Biem Menschen. Jahreshefte Des Vereins Für Vaterländische Naturkunde in Württemberg, 64, 368–382.Google Scholar
  71. Weisberg, M. (2007). Three kinds of idealization. The Journal of Philosophy, 104(12), 639–659.CrossRefGoogle Scholar
  72. Weisberg, M. (2012). Getting serious about similarity. Philosophy of Science, 79(5), 785–794.CrossRefGoogle Scholar
  73. Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. New York: Oxford University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of HumanitiesMorningside CollegeSioux CityUSA

Personalised recommendations