pp 1–34 | Cite as

A subjectivist’s guide to deterministic chance

  • J. Dmitri GallowEmail author


I present an account of deterministic chance which builds upon the physico-mathematical approach to theorizing about deterministic chance known as the method of arbitrary functions. This approach promisingly yields deterministic probabilities which align with what we take the chances to be—it tells us that there is approximately a 1/2 probability of a spun roulette wheel stopping on black, and approximately a 1/2 probability of a flipped coin landing heads up—but it requires some probabilistic materials to work with. I contend that the right probabilistic materials are found in reasonable initial credence distributions. I note that, with some rather weak normative assumptions, the resulting account entails that deterministic chances obey a variant of Lewis’s ‘principal principle’. I additionally argue that deterministic chances, so understood, are capable of explaining long-run frequencies.


Deterministic chance Method of arbitrary functions Principal principle 



Thanks to Michael Caie, Cian Dorr, Daniel Drucker, Jeremy Goodman, Zoë Johnson King, Harvey Lederman, Jonathan Livengood, Japa Pallikkathayil, Bernhard Salow, James Shaw, Erica Shumener, Charles Sebens, Jack Spencer, Michael Strevens, Rohan Sud, Brad Weslake, two anonymous reviewers, and the Logic, Language, Metaphysics, and Mind Reading Group at MIT for helpful conversations about this material.


  1. Abrams, M. (2012). Mechanistic probability. Synthese, 187(2), 343–375.CrossRefGoogle Scholar
  2. Albert, D. Z. (2000). Time and chance. Cambridge: Harvard University Press.Google Scholar
  3. Albert, D. Z. (2015). After physics. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  4. Bartle, R. G. (1966). The elements of integration and lebesgue measure. New York: Wiley. Wiley Classics Library Edition.Google Scholar
  5. Beisbart, C. (2016). A Humean guide to Spielraum probabilities. Journal for General Philosophy of Science, 47, 189–216.CrossRefGoogle Scholar
  6. Bradley, S. (2017). Are objective chances compatible with determinism? Philosophy Compass, 12(8), e12430. CrossRefGoogle Scholar
  7. Butterfield, J. (2011). Less is different: Emergence and reduction reconciled. Foundations of Physics, 41(6), 1065–1135.CrossRefGoogle Scholar
  8. Carroll, L. (1895). What the tortoise said to Achilles. Mind, 4(14), 278–280.CrossRefGoogle Scholar
  9. Clark, P. (1987). Determinism and probability in physics. Proceedings of the Aristotelian Society, Supplementary, 61, 185–210.CrossRefGoogle Scholar
  10. de Finetti, B. (1974). Theory of probability (Vol. 1). New York: Wiley.Google Scholar
  11. Diaconis, P., Holmes, S., & Montgomery, R. (2007). Dynamical bias in the coin toss. SIAM Review, 49(2), 211–235.CrossRefGoogle Scholar
  12. Elga, A. (2013). The puzzle of the unmarked clock and the new rational reflection principle. Philosophical Studies, 164(1), 127–139.CrossRefGoogle Scholar
  13. Engel, E. (1992). A road to randomness in physical systems (Vol. 71). Berlin: Springer. Lecture notes in statistics.CrossRefGoogle Scholar
  14. Fine, K. (1975). Vagueness, truth, and logic. Synthese, 30, 265–300.CrossRefGoogle Scholar
  15. Glynn, L. (2010). Deterministic chance. The British Journal for the Philosophy of Science, 61(1), 51–80.CrossRefGoogle Scholar
  16. Greco, D. (2014). A puzzle about epistemic akrasia. Philosophical Studies, 167, 201–219.CrossRefGoogle Scholar
  17. Hempel, C. (1965). Aspects of scientific explanation and other essays in the philosophy of science. New York: Free Press.Google Scholar
  18. Hoefer, C. (2007). The third way of objective probability: A skeptic’s guide to objective chance. Mind, 463, 549–596.CrossRefGoogle Scholar
  19. Hopf, E. (1934). On causality, statistics, and probability. Journal of Mathematics and Physics, 13, 51–102.CrossRefGoogle Scholar
  20. Horowitz, S. (2014). Epistemic akrasia. Noûs, 48(4), 718–744.CrossRefGoogle Scholar
  21. Ismael, J. (2009). Probability in deterministic physics. Journal of Philosophy, 106, 89–109.CrossRefGoogle Scholar
  22. Joyce, J. M. (2010). A defense of imprecise credences in inference and decision making. Philosophical Perspectives, 24(1), 281–323.CrossRefGoogle Scholar
  23. Keefe, R. (2000). Theories of vagueness. Cambridge: Cambridge University Press.Google Scholar
  24. Keller, J. B. (1986). The probability of heads. The American Mathematical Monthly, 93(3), 191–197.CrossRefGoogle Scholar
  25. Laplace, M. D. (1814). A philosophical essay on probabilities (Translated from the 6th French Edition by F.W. Truscatt, & F.L. Emory). Dover Publications, New York.Google Scholar
  26. Lasonen-Aarnio, M. (2014). Higher-order evidence and the limits of defeat. Philosophy and Phenomenological Research, 88(2), 314–345.CrossRefGoogle Scholar
  27. Lasonen-Aarnio, M. (2015). New rational reflection and internalism about rationality. Oxford studies in epistemology (Vol. 5, pp. 145–171). Oxford: Oxford University Press.CrossRefGoogle Scholar
  28. Lasonen-Aarnio, M. (forthcoming). Enkrasia or evidentialism? Learning to love mismatch. Philosophical Studies. Google Scholar
  29. Levi, I. (1974). On indeterminate probabilities. Journal of Philosophy, 71, 391–418.CrossRefGoogle Scholar
  30. Lewis, D. K. (1980). A subjectivist’s guide to objective chance. In R. C. Jeffrey (Ed.), Studies in inductive logic and probability (Vol. II, pp. 263–293). Berkeley: University of California Press.Google Scholar
  31. Lewis, D. K. (1986). A subjectivist’s guide to objective chance. In: Philosophical papers (Vol. II). Oxford: Oxford University Press.Google Scholar
  32. Lewis, D. K. (1994). Humean supervenience debugged. Mind, 103(412), 473–490.CrossRefGoogle Scholar
  33. Loewer, B. (2001). Determinism and chance. Studies in the History and Philosophy of Modern Physics, 32(4), 609–620.CrossRefGoogle Scholar
  34. Loewer, B. (2004). David Lewis’s Humean theory of objective chance. Philosophy of Science, 71, 1115–1125.CrossRefGoogle Scholar
  35. Loewer, B. (2007). Counterfactuals and the second law. In H. Price & R. Corry (Eds.), Causation, physics, and the constitution of reality: Russell’s republic revisited, Chap 11 (pp. 293–326). Oxford: Oxford University Press.Google Scholar
  36. Myrvold, W. C. (2012). Deterministic laws and epistemic chances. In Y. Ben-Menahem & M. Hemmo (Eds.), Probability in physics (pp. 73–85). Berlin: Springer.CrossRefGoogle Scholar
  37. Poincaré, H. (1905). Science and hypothesis, Chap 11: The calculus of probabilities. New York: The Walter Scott Publishing Company.Google Scholar
  38. Poincaré, H. (1912). Calcul des probabilités (2nd ed.). Paris: Gauthier-Villars.Google Scholar
  39. Popper, K. (1982). Quantum theory and the schism in physics. New Jersey: Rowman and Littlefield.Google Scholar
  40. Ramsey, F. P. (1931). Truth and probability. In R. Braithwaite (Ed.), Foundations of mathematics and other logical essays, chap VII (pp. 156–198). London: Kegan, Paul, Trench, Trubner & Co., Ltd.Google Scholar
  41. Reichenbach, H. (1971). The theory of probability: An Inquiry into the logical and mathematical foundations of the calculus of probabilities (2nd ed.). Berkeley: University of California Press.Google Scholar
  42. Roberts, J. T. (2016). The range conception of probability and the input problem. Journal for General Philosophy of Science, 47, 171–188.CrossRefGoogle Scholar
  43. Rosenthal, J. (2010). The natural-range conception of probability. In G. Ernst & A. Hüttemann (Eds.), Time, chance, and reduction: Philosophical aspects of statistical mechanics (pp. 71–91). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  44. Rosenthal, J. (2012). Probabilities as ratios of ranges in initial-state spaces. Journal of Logic, Language and Information, 21, 217–236.CrossRefGoogle Scholar
  45. Rosenthal, J. (2016). Johannes con Kries’s range conception, the method of arbitrary functions and related modern approaches to probability. Journal for General Philosophy of Science, 47, 151–170.CrossRefGoogle Scholar
  46. Savage, L. J. (1954). The foundations of statistics (2nd ed.). New York: Dover Publications.Google Scholar
  47. Savage, L. J. (1971). Probability in science: A personalistic account. In P. Suppes, L. Henkin, A. Joja, & G. C. Moisil (Eds.), Logic, methodology, and philosophy of science (Vol. 4, pp. 417–428). Amsterdam: North-Holland Publishing Company.Google Scholar
  48. Schaffer, J. (2007). Deterministic chance? The British Journal for the Philosophy of Science, 58, 113–140.CrossRefGoogle Scholar
  49. Sober, E. (2010). Evolutionary theory and the reality of macro probabilities. In E. Eells & J. H. Fetzer (Eds.), The place of probability in science (pp. 133–161). Dordrecht: Springer.CrossRefGoogle Scholar
  50. Strevens, M. (2000). Do large probabilities explain better? Philosophy of Science, 67, 366–390.CrossRefGoogle Scholar
  51. Strevens, M. (2003). Bigger than chaos: Understanding complexity through probability. Cambridge: Harvard University Press.Google Scholar
  52. Strevens, M. (2011). Probability out of determinism. In C. Beisbart & S. Hartmann (Eds.), Probability in physics (pp. 339–364). Oxford: Oxford University Press.CrossRefGoogle Scholar
  53. Strevens, M. (2013). Tychomancy. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  54. Titelbaum, M. G. (2014). Rationality’s fixed point (or: In defense of right reason). Oxford Studies in Epistemology, 5, 253–294. Google Scholar
  55. van Fraassen, B. C. (1990). Figures in a probability landscape. In J. M. Dunn & A. Gupta (Eds.), Truth or consequences: Essays in honor of Nuel Belnap (pp. 345–356). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  56. van Fraassen, B. C. (2006). Vague expectation value loss. Philosophical Studies, 127, 483–491.CrossRefGoogle Scholar
  57. von Kries, J. (1886). Principien der Wahrscheinlichkeitsrechnung, eine logische Untersuchung. Freiburg im Breisgau: Mohr.Google Scholar
  58. von Plato, J. (1982). Probability and determinism. Philosophy of Science, 49(1), 51–66.CrossRefGoogle Scholar
  59. von Plato, J. (1983). The method of arbitrary functions. The British Journal for the Philosophy of Science, 34(1), 37–47.CrossRefGoogle Scholar
  60. Walley, P. (1991). Statistical reasoning with imprecise probabilities. London: Chapman & Hall.CrossRefGoogle Scholar
  61. White, R. (2005). Epistemic permissiveness. Philosophical Perspectives, 19, 445–459.CrossRefGoogle Scholar
  62. White, R. (2009). Evidential symmetry and mushy credence. Oxford Studies in Epistemology, 3, 161–186. Google Scholar
  63. Williamson, T. (1994). Vagueness. London: Routledge.Google Scholar
  64. Williamson, T. (2000). Knowledge and its limits. Oxford: Oxford University Press.Google Scholar
  65. Williamson, T. (2011). Improbable knowing. In T. Dougherty (Ed.), Evidentialism and its discontents. Oxford: Oxford University Press.Google Scholar
  66. Williamson, T. (2014). Very improbable knowing. Erkenntnis, 79(5), 971–999.CrossRefGoogle Scholar
  67. Woodward, J. (2016). The problem of variable choice. Synthese, 193(4), 1047–1072.CrossRefGoogle Scholar
  68. Zabell, S. (2016). Johannes von Kries’s Principien: A brief guide for the perplexed. Journal for General Philosophy of Science, 47, 131–150.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of PittsburghPittsburghUSA

Personalised recommendations