Advertisement

Synthese

pp 1–16 | Cite as

Real patterns and indispensability

  • Abel Suñé
  • Manolo MartínezEmail author
Computational Modelling in Philosophy
Part of the following topical collections:
  1. Computational Modeling in Philosophy

Abstract

While scientific inquiry crucially relies on the extraction of patterns from data, we still have a far from perfect understanding of the metaphysics of patterns—and, in particular, of what makes a pattern real. In this paper we derive a criterion of real-patternhood from the notion of conditional Kolmogorov complexity. The resulting account belongs to the philosophical tradition, initiated by Dennett (J Philos 88(1):27–51, 1991), that links real-patternhood to data compressibility, but is simpler and formally more perspicuous than other proposals previously defended in the literature. It also successfully enforces a non-redundancy principle, suggested by Ladyman and Ross (Every thing must go: metaphysics naturalized, Oxford University Press, Oxford, 2007), that aims to exclude from real-patternhood those patterns that can be ignored without loss of information about the target dataset, and which their own account fails to enforce.

Keywords

Kolmogorov complexity Real patterns Structure functions Algorithmic information theory Metaphysics of science 

Notes

Acknowledgements

We would like to thank James Ladyman for his very generous discussion of the topics of this paper. We would also like to thank the participants of the reading group on Real Patterns held at the University of Barcelona in 2018. Two very detailed reviews from two anonymous referees helped us to significantly improve the paper. Abel Suñé also wishes to thank J.P. Grodniewicz for valuable discussion and Pepa Toribio for her support. Manolo Martínez would like to acknowledge research funding awarded by the Spanish Ministry of Economy, Industry and Competitiveness, in the form of grants PGC2018-101425-B-I00 and RYC-2016-20642.

References

  1. Andersen, H. K. (2017). Pattens, information, and causation. The Journal of Philosophy, 114(11), 592–622.CrossRefGoogle Scholar
  2. Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., et al. (2013). NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Research, 41(D1), D991–D995.  https://doi.org/10.1093/nar/gks1193.CrossRefGoogle Scholar
  3. Bennett, C. H. (1988). Logical depth and physical complexity. In R. Herken (Ed.), The universal Turing machine, a half century survey, (pp. 227-257). Oxford University Press. Google Scholar
  4. Bird, A. P. (1986). CpG-rich islands and the function of DNA methylation. Nature, 321(6067), 209.  https://doi.org/10.1038/321209a0.CrossRefGoogle Scholar
  5. Bogen, J., & Woodward, J. (1988). Saving the phenomena. The Philosophical Review, 97(3), 303–352.CrossRefGoogle Scholar
  6. Chaitin, G. J. (1966). On the length of programs for computing finite binary sequences. Journal of the ACM (JACM), 13(4), 547–569.CrossRefGoogle Scholar
  7. Collier, J. (2001). Dealing with the unexpected. In Partial proceedings of CASYS 2000: Fourth international conference on computing anticipatory systems, international journal of computing anticipatory systems (vol. 10, pp. 21–30).Google Scholar
  8. Collier, J., & Hooker, C. A. (1999). Complexly organised dynamical systems. Open Systems and Information Dynamics, 6(3), 241–302.CrossRefGoogle Scholar
  9. Cover, T., & Thomas, J. (2006). Elements of information theory (Wiley Series in Telecommunications and Signal Processing). New York, NY: Wiley-Interscience.Google Scholar
  10. Dennett, D. C. (1991). Real patterns. The Journal of Philosophy, 88(1), 27–51.CrossRefGoogle Scholar
  11. Feigelson, E. D., & Babu, G. J. (2012). Big data in astronomy. Significance, 9, 22–25.  https://doi.org/10.1111/j.1740-9713.2012.00587.x.CrossRefGoogle Scholar
  12. Frøkjær-Jensen, C., Jain, N., Hansen, L., Davis, M. W., Li, Y., Zhao, D., et al. (2016). An abundant class of non-coding DNA can prevent stochastic gene silencing in the C. elegans germline. Cell, 166(2), 343–357.  https://doi.org/10.1016/j.cell.2016.05.072.CrossRefGoogle Scholar
  13. Gács, P., Tromp, J. T., & Vitányi, P. (2001). Algorithmic statistics. IEEE Transactions on Information Theory, 47(6), 2443–2463.CrossRefGoogle Scholar
  14. Griffith, V., Chong, E. K., James, R. G., Ellison, C. J., & Crutchfield, J. P. (2014). Intersection information based on common randomness. Entropy, 16(4), 1985–2000.CrossRefGoogle Scholar
  15. Grünwald, P. (2007). The minimum description length principle. Cambridge: The MIT Press.CrossRefGoogle Scholar
  16. Grünwald, P. D., & Vitányi, P. M. B. (2008). Algorithmic Information Theory. In Adriaans, P. & van Benthem, J. (Eds.), Philosophy of Information (Vol. 8, pp. 281–320). Handbook of the Philosophy of Science. Amsterdam: North-Holland.Google Scholar
  17. Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems of Information Transmission, 1(1), 1–7.Google Scholar
  18. Ladyman, J., & Ross, D. (2007). Every thing must go: Metaphysics naturalized. Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. Larsen, F., Gundersen, G., Lopez, R., & Prydz, H. (1992). CpG islands as gene markers in the human genome. Genomics, 13(4), 1095–1107.  https://doi.org/10.1016/0888-7543(92)90024-M.CrossRefGoogle Scholar
  20. Li, M., & Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications. Texts in computer science (Vol. 9). New York: Springer.CrossRefGoogle Scholar
  21. Martínez, M. (2015). Informationally-connected property clusters, and polymorphism. Biology and Philosophy, 30(1), 99–117.CrossRefGoogle Scholar
  22. Martínez, M. (2017). Synergic kinds. Synthese.  https://doi.org/10.1007/s11229-017-1480-2.CrossRefGoogle Scholar
  23. McAllister, J. W. (2003a). Algorithmic randomness in empirical data. Studies in History and Philosophy of Science Part A, 34(3), 633–646.CrossRefGoogle Scholar
  24. McAllister, J. W. (2003b). Effective complexity as a measure of information content. Philosophy of Science, 70(2), 302–307.CrossRefGoogle Scholar
  25. McAllister, J. W. (2011). What do patterns in empirical data tell us about the structure of the world? Synthese, 182(1), 73–87.CrossRefGoogle Scholar
  26. Petersen, S. (2013). Toward an algorithmic metaphysics. In D. Dowe (Ed.), Algorithmic probability and friends: Bayesian prediction and artificial intelligence (pp. 306–317). Berlin: Springer.CrossRefGoogle Scholar
  27. Petersen, S. (2018). Composition as pattern. Philosophical Studies, 176, 1119.  https://doi.org/10.1007/s11098-018-1050-6.CrossRefGoogle Scholar
  28. Rappaport, T. S. (1996). Wireless communications: Principles and practice. Upper Saddle River, NJ: Prentice Hall PTR.Google Scholar
  29. Rissanen, J. (1998). Stochastic complexity in statistical inquiry (Vol. 15). Singapore: World Scientific.CrossRefGoogle Scholar
  30. Ross, D. (2000). Rainforest realism: A Dennettian theory of existence. In D. Ross, D. Thomson, & A. Brook (Eds.), Dennett’s philosophy: A comprehensive assessment (pp. 147–168). Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
  31. Shannon, C. E. (1959). Coding theorems for a discrete source with a fidelity criterion. Institute of Radio Engineers, International Convention Record, Part 4, 142–163.Google Scholar
  32. Solomonoff, R. J. (1964a). A formal theory of inductive inference. Part I. Information and Control, 7(1), 1–22.CrossRefGoogle Scholar
  33. Solomonoff, R. J. (1964b). A formal theory of inductive inference. Part II. Information and Control, 7(2), 224–254.CrossRefGoogle Scholar
  34. Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: A structural description of the human brain. PLoS Computational Biology, 1(4), e42.  https://doi.org/10.1371/journal.pcbi.0010042.CrossRefGoogle Scholar
  35. Vereshchagin, N., & Shen, A. (2017). Algorithmic statistics: Forty years later. In A. Day, M. Fellows, N. Greenberg, B. Khoussainov, A. Melnikov, & F. Rosamond (Eds.), Computability and complexity: Essays dedicated to Rodney G. Downey on the occasion of his 60th birthday. Lecture Notes in Computer Science (pp. 669–737). Cham: Springer.  https://doi.org/10.1007/978-3-319-50062-1_41.CrossRefGoogle Scholar
  36. Vereshchagin, N., & Vitanyi, P. (2010). Rate distortion and denoising of individual data using Kolmogorov complexity. IEEE Transactions on Information Theory, 56(7), 3438–3454.  https://doi.org/10.1109/TIT.2010.2048491.CrossRefGoogle Scholar
  37. Vereshchagin, N., & Vitányi, P. (2006). On algorithmic rate-distortion function. In 2006 IEEE international symposium on information theory (pp. 798–802). IEEE.Google Scholar
  38. Vitányi, P. M. (2006). Meaningful Information. IEEE Transactions on Information Theory, 52(10), 4617–4626.CrossRefGoogle Scholar
  39. Williams, P. L., & Beer, R. D. (2010). Nonnegative decomposition of multivariate information. ArXiv Preprint arXiv:1004.2515.

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.LOGOS Research Group in Analytic Philosophy, Barcelona Institute of Analytic Philosophy, Department of PhilosophyUniversitat de BarcelonaBarcelonaCatalonia

Personalised recommendations