Advertisement

Synthese

pp 1–25 | Cite as

Proof-theoretic pluralism

  • Filippo FerrariEmail author
  • Eugenio Orlandelli
S.I.: Pluralistic Perspectives on Logic

Abstract

Starting from a proof-theoretic perspective, where meaning is determined by the inference rules governing logical operators, in this paper we primarily aim at developing a proof-theoretic alternative to the model-theoretic meaning-invariant logical pluralism discussed in Beall and Restall (Logical pluralism, Oxford University Press, Oxford, 2006). We will also outline how this framework can be easily extended to include a form of meaning-variant logical pluralism. In this respect, the framework developed in this paper—which we label two-level proof-theoretic pluralism—is much broader in scope than the one discussed in Beall and Restall’s book.

Keywords

Logical pluralism Proof-theoretic semantics Sequent calculi Harmony Relevance logic Formality Necessity Normativity 

Notes

Acknowledgements

This paper has benefitted enormously from exchanges with many colleagues and friends. We are particularly grateful to: Elke Brendel, Sebastiano Moruzzi, Nikolaj Jang Lee Linding Pedersen, Stefano Pugnaghi, Erik Stei, Elena Tassoni, Giorgio Volpe, and two anonymous referees. We would also like to thank the audience at the Seric Seminar at the Department of Philosophy and Communication Studies, University of Bologna. Ferrari would like to acknowledge the generous support of the Deutsche Forschungsgemeinschaft (DFG–BR 1978/3–1) for sponsoring his postdoctoral fellowship at the University of Bonn. Ferrari has benefitted from participation in the Pluralisms Global Research Network (National Research Foundation of Korea grant no. 2013S1A2A2035514). This support is also gratefully acknowledged.

References

  1. Beall, J., et al. (2006). Relevant restricted quantification. Journal of Philosophical Logic, 35(6), 587–598.CrossRefGoogle Scholar
  2. Beall, J., & Restall, G. (2006). Logical pluralism. Oxford: Oxford University Press.Google Scholar
  3. Belnap, N. D. (1962). Tonk, plonk and plink. Analysis, 22(6), 130–134.CrossRefGoogle Scholar
  4. Bueno, O., & Shalkowski, S. (2009). Modalism and logical pluralism. Mind, 118(470), 295–321.CrossRefGoogle Scholar
  5. Carnap, R. (1937). The logical syntax of the world. New York: Routledge & Kegan Paul Ltd.Google Scholar
  6. Dicher, B. (2016a). A proof-theoretic defence of meaning-invariant logical pluralism. Mind, 125(499), 727–757.CrossRefGoogle Scholar
  7. Dicher, B. (2016b). Weak disharmony: Some lessons for proof-theoretic semantics. The Review of Symbolic Logic, 9(3), 583–602.CrossRefGoogle Scholar
  8. Dos̆en, K. (1988). Sequent-systems and grupoids models. Studia Logica, 47, 353–386.CrossRefGoogle Scholar
  9. Dos̆en, K. (1989a). Sequent-systems and grupoids models. Studia Logica, 48, 41–65.CrossRefGoogle Scholar
  10. Dos̆en, K. (1989b). Logical constants as punctuation marks. Notre Dame Journal of Formal Logic, 30(3), 362–381.CrossRefGoogle Scholar
  11. Dummett, M. (1973). Frege: Philosophy of language. Harvard: Harvard University Press.Google Scholar
  12. Dummett, M. (1991). The logical basis of metaphysics. London: Duckworth.Google Scholar
  13. Dunn, J. M., & Restall, G. (2002). Relevance logic. In D. M. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (2nd ed., Vol. 6, pp. 1–128). Dordrecht: Kluwer.Google Scholar
  14. Ferrari, F., & Moruzzi, S. (2017). Logical pluralism, indeterminacy and the normativity of logic. Inquiry.  https://doi.org/10.1080/0020174X.2017.1393198.
  15. Gentzen, G. (1934–1935). Untersuchungen \(\ddot{\rm u}\)ber das logische schliessen. Mathematische Zeitschrift, 39, 176–210 and 405–431.Google Scholar
  16. Gratzl, N., & Orlandelli, E. (2017). Double-line harmony in a sequent setting. In P. Arazim & T. Lávicka (Eds.), Logica Yearbook 2016 (pp. 157–171). London: College Publications.Google Scholar
  17. Gratzl, N., & Orlandelli, E. (2019). Logicality, double-line rules, and modalities. Studia Logica, 107(1), 85–107.CrossRefGoogle Scholar
  18. Haack, S. (1974). Deviant logic. London: Cambridge University Press.Google Scholar
  19. Hjortland, O. T. (2013). Logical pluralism, meaning-variance, and verbal disputes. Australasian Journal of Philosophy, 91(2), 355–373.CrossRefGoogle Scholar
  20. Kouri, T. (2016). Restall’s proof-theoretic pluralism and relevance logic. Erkenntnis, 81, 1243–1252.CrossRefGoogle Scholar
  21. MacFarlane, J. (2000). What does it mean to say that logic is formal?. Ph.D. thesis, University of Pittsburgh.Google Scholar
  22. MacFarlane, J. (2004). In what sense (if any) is logic normative for thought? Unpublished manuscript, http://johnmacfarlane.net/normativity_of_logic.pdf. Accessed 1 May 2018.
  23. Moriconi, E., & Tesconi, L. (2008). On inversion principles. History and Philosophy of Logic, 29(2), 103–113.CrossRefGoogle Scholar
  24. Naibo, A., & Petrolo, M. (2015). Are uniqueness and deducibility of identicals the same? Theoria, 81, 143–181.CrossRefGoogle Scholar
  25. Negri, S., & von Plato, J. (2001). Structural proof theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. Paoli, F. (2003). Quine and Slater on paraconsistency and deviance. Journal of Philosophical Logic, 32(5), 531–548.CrossRefGoogle Scholar
  27. von Plato, J. (2001). A proof of Gentzen’s Hauptsatz without multicut. Archive for Mathematical Logic, 40(1), 9–18.CrossRefGoogle Scholar
  28. Prior, A. N. (1960). The runabout inference ticket. Analysis, 21(2), 38–39.CrossRefGoogle Scholar
  29. Read, S. (2000). Harmony and autonomy in classical logic. Journal of Philosophical Logic, 29, 123–154.CrossRefGoogle Scholar
  30. Restall, G. (2005). Multiple conclusions. In 12th International congress on logic, methodology and philosophy of science (pp. 189–205). London: KCL Publications.Google Scholar
  31. Restall, G. (2014). Pluralism and proofs. Erkenntnis, 79, 279–291.CrossRefGoogle Scholar
  32. Ripley, D. (2015). Comparing substructural theories of truth. Ergo, 2(13), 299–328.Google Scholar
  33. Shapiro, L. (2017). LP, K3, and FDE as substructural logics. In P. Arazim & T. Lávicka (Eds.), Logica Yearbook 2016 (pp. 257–272). London: College Publications.Google Scholar
  34. Shapiro, S. (2014). Varieties of logic. Oxford: Oxford University Press.CrossRefGoogle Scholar
  35. Steinberger, F. (2008). Tennant on multiple conclusions. Logique et Analyse, 51(201), 49–55.Google Scholar
  36. Steinberger, F. (2011a). What harmony could and could not be. Australasian Journal of Philosophy, 89, 617–639.CrossRefGoogle Scholar
  37. Steinberger, F. (2011b). Why conclusions should remain single. Journal of Philosophycal Logic, 40, 333–355.CrossRefGoogle Scholar
  38. Steinberger, F. (2017). The normative status of logic. In The Stanford Encyclopedia of Philosophy (Spring 2017 Edition), https://plato.stanford.edu/archives/spr2017/entries/logic-normative/. Accessed 1 May 2018.
  39. Tarski, A. (1956). Logic, semantics, metamathematics. Oxford: Clarendon Press.Google Scholar
  40. Tennant, N. (1997). The taming of the true. Oxford: Oxford University Press.Google Scholar
  41. Urbas, I. (1996). Dual-intuitionistic logic. Notre Dame Journal of Formal Logic, 37(3), 440–451.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institut für Philosophie, Lehrstuhl für Logik und GrundlagenforschungUniversität BonnBonnGermany
  2. 2.Dipartimento di Filosofia e ComunicazioneUniversità degli Studi di BolognaBolognaItaly

Personalised recommendations