pp 1–19 | Cite as

Species are, at the same time, kinds and individuals: a causal argument based on an empirical approach to species identity

  • Elena CasettaEmail author
  • Davide Vecchi
S.I. : Natural Kinds: Language, Science, and Metaphysics


After having reconstructed a minimal biological characterisation of species, we endorse an “empirical approach” based on the idea that it is the peculiar evolutionary history of the species at issue—its peculiar origination process, its peculiar metapopulation structure and the peculiar mixture and strength of homeostatic processes vis à vis heterostatic ones—that determines species’ identity at a time and through time. We then explore the consequences of the acceptance of the empirical approach in settling the individuals versus kinds dispute. In particular, while conceptual arguments have been proposed to show that species can be equally treated as individuals and kinds because mereology’s and set-theory’s languages are inter-translatable, we advance instead a causal argument to sustain the claim that each species is both a kind (i.e., a class whose members share some properties included in a cluster) and an individual (i.e., a whole made of parts).


Biological species HPC kinds Species-individuals 



We thank Ingo Brigandt, Kevin de Queiroz, Matthew Slater, and Achille Varzi for incisive feedback and suggestions. We also thank the anonymous reviewers for their stimulating feedback, and the audience at the EPILOG seminar (in particular Cristina Amoretti and Marcello Frixione) of the University of Genoa, Italy, where the ideas proposed in this article starting to take shape. We acknowledge the financial support of the Fundação para a Ciência e a Tecnologia (BIODECON R&D Project Grant PTDC/IVC-HFC/1817/2014). Davide Vecchi also acknowledges the financial support of the Fundação para a Ciência e a Tecnologia (Grant No. SFRH/BPD/99879/2014; Grant No. UID/FIL/00678/2019).


  1. Assis, L. C. S., & Brigandt, I. (2009). Homology: Homeostatic property cluster kinds in systematics and evolution. Evolutionary Biology, 36, 248–255.CrossRefGoogle Scholar
  2. Barker, M. J. (2010). Specious intrinsicalism. Philosophy of Science, 77, 73–91.CrossRefGoogle Scholar
  3. Barker, M. J., & Wilson, R. A. (2010). Cohesion, gene flow, and the nature of species. The Journal of Philosophy, 107(2), 61–79.CrossRefGoogle Scholar
  4. Boyd, R. (1999). Homeostasis, species, and higher taxa. In R. A. Wilson (Ed.), Species. New interdisciplinary essays (pp. 141–186). Cambridge, MA: MIT Press.Google Scholar
  5. Brigandt, I. (2009). Natural kinds in evolution and systematics: Metaphysical and epistemological considerations. Acta Biotheoretica, 57, 77–97. Scholar
  6. Brogaard, B. O. (2004). Species as individuals. Biology and Philosophy, 19, 223–242.CrossRefGoogle Scholar
  7. Burggren, W. (2016). Epigenetic inheritance and its role in evolutionary biology: Re-evaluation and new perspectives. Biology, 5, 24. Scholar
  8. Colless, D. H. (2006). Taxa, individuals, clusters and a few other things. Biology and Philosophy, 21, 353–367.CrossRefGoogle Scholar
  9. de Queiroz, K. (1995). The definitions of species and clade names: A reply to Ghiselin. Biology and Philosophy, 10, 223–228.CrossRefGoogle Scholar
  10. de Queiroz, K. (1999). The general lineage concept of species and the defining properties of the species category. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 49–89). Cambridge, MA: MIT Press.Google Scholar
  11. de Queiroz, K. (2005a). Ernst Mayr and the modern concept of species. PNAS, 3(102), 6600–6607.CrossRefGoogle Scholar
  12. de Queiroz, K. (2005b). Different species problems and their resolution. BioEssays, 27, 1263–1269.CrossRefGoogle Scholar
  13. de Queiroz, K. (2007). Species concepts and species delimitation. Systematic, 56(6), 879–886.CrossRefGoogle Scholar
  14. Devitt, M. (2008). Resurrecting biological essentialism. Philosophy of Science, 75, 344–382.CrossRefGoogle Scholar
  15. Dobzhansky, T. (1950). Mendelian populations and their evolution. The American Naturalist, 84(819), 401–418.CrossRefGoogle Scholar
  16. Doolittle, W. F., & Zhaxybayeva, O. (2009). On the origin of prokaryotic species. Genome Research, 19, 744–756.CrossRefGoogle Scholar
  17. Dupré, J. (1995). The disorder of things: Metaphysical foundations of the disunity of science. Cambridge, MA: Harvard University Press.Google Scholar
  18. Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in paleobiology (pp. 82–115). San Francisco: Freeman Cooper.Google Scholar
  19. Ereshefsky, M. (2010). Microbiology and the species problem. Biology and Philosophy, 25, 553–568. Scholar
  20. Ereshefsky, M. (2014). Species, historicity and path dependency. Philosophy of Science, 81(5), 714–726.CrossRefGoogle Scholar
  21. Ereshefsky, M., & Matthen, M. (2005). Taxonomy, polymorphism, and history: An introduction to population structure theory. Philosophy of Science, 72(1), 1–21.CrossRefGoogle Scholar
  22. Gayon, J. (1996). The individuality of the species: A Darwinian theory? From Buffon to Ghiselin, and back to Darwin. Biology and Philosophy, 11, 193–204.CrossRefGoogle Scholar
  23. Ghiselin, M. T. (1974). A radical solution to the species problem. Systematic Zoology, 23, 436–444.Google Scholar
  24. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
  25. Hull, D. (1976). Are species really individuals? Systematic Zoology, 25(2), 174–191.CrossRefGoogle Scholar
  26. Hull, D. (1978). A matter of individuality. Philosophy of Science, 45(3), 335–360.CrossRefGoogle Scholar
  27. Hull, D. L. (1992). Individual. In E. Fox Keller & E. A. Lloyd (Eds.), Keywords in evolutionary biology (pp. 181–187). Cambridge, MA: Harvard University Press.Google Scholar
  28. Kitcher, P. (1984). Species. Philosophy of Science, 51, 308–333.CrossRefGoogle Scholar
  29. LaPorte, J. (2004). Natural kinds and conceptual change. Cambridge: Cambridge University Press.Google Scholar
  30. LaPorte, J. (2007). In defense of species. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 38(1), 255–269.CrossRefGoogle Scholar
  31. Levins, R. (1970). Extinction. Lectures on Mathematics in the Life Sciences, 2, 75–77.Google Scholar
  32. Mallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution, 10, 294–299.CrossRefGoogle Scholar
  33. Mayr, E. (1963). Animal species and evolution. London: Belknap Press of Harvard University Press.CrossRefGoogle Scholar
  34. Mayr, E. (1970). Populations, species, and evolution. Cambridge: Harvard University Press.Google Scholar
  35. Mayr, E. (1988). The why and how of species. Biology and Philosophy, 3, 431–441.CrossRefGoogle Scholar
  36. Mayr, E. (2001). What evolution is. New York: Basic Books.Google Scholar
  37. Okasha, S. (2002). Darwinian metaphysics. Species and the question of essentialism. Synthese, 131, 191–213.CrossRefGoogle Scholar
  38. Queller, D. C., & Strassman, J. W. (2009). Beyond society: The evolution of organismality. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2009(364), 3143–3155.CrossRefGoogle Scholar
  39. Relethford, J. H. (2008). Genetic evidence and the modern human origins debate. Heredity, 100, 555–563.CrossRefGoogle Scholar
  40. Reydon, T. (2009). Species and kinds: A critique of Rieppel’s “one of a kind” account of species. Cladistics, 25, 660–667.CrossRefGoogle Scholar
  41. Richards, R. (2010). The species problem. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  42. Ridley, M. (2004). Evolution. Oxford: Blackwell.Google Scholar
  43. Rieppel, O. (2007). Species: Kinds of individuals or individuals of a kind. Cladistics, 23, 373–384.CrossRefGoogle Scholar
  44. Rieppel, O. (2009). Species as a process. Acta Biotheoretica, 57, 33–49.CrossRefGoogle Scholar
  45. Samadi, S., & Barberousse, A. (2006). The tree, the network, and the species. Biological Journal of the Linnean Society, 89, 509–521.CrossRefGoogle Scholar
  46. Slater, M. H. (2013). Are species real? An essay on the metaphysics of species. London: Palgrave Macmillan.CrossRefGoogle Scholar
  47. Slater, M. H. (2015). Natural kindness. British Journal for the Philosophy of Science, 66(2), 375–411.CrossRefGoogle Scholar
  48. Stamos, D. (2003). The species problem. Lanham, MD: Lexington Books.Google Scholar
  49. Templeton, A. R. (1989). The meaning of species and speciation: A genetic perspective. In D. Otte & J. A. Endler (Eds.), Speciation and its consequences (pp. 3–27). Sunderland: Sinauer Associates Inc.Google Scholar
  50. Tishkoff, S. A., et al. (2007). Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genetics, 39, 31–40.CrossRefGoogle Scholar
  51. Varzi, A. (2016). Mereology. The Stanford Encyclopedia of Philosophy (Spring 2016 Edition), Edward N. Zalta (ed.). Accessed April 2018.
  52. West-Eberhard, M. J. (2003). Developmental plasticity and evolution. New York: Oxford University Press.Google Scholar
  53. Wilkins, J. S. (2009). Defining species. A sourcebook from antiquity to today. New York: Peter Lang.Google Scholar
  54. Wilson, E. O. (1975). Sociobiology: The new synthesis. Cambridge, MA: Harvard University Press.Google Scholar
  55. Wilson, R. A. (1996). Promiscuous realism. British Journal for the Philosophy of Science, 47, 303–316.CrossRefGoogle Scholar
  56. Wilson, R. A., Barker, M. J., & Brigandt, I. (2007). When traditional essentialism fails: Biological natural kinds. Philosophical Topics, 35, 189–215.CrossRefGoogle Scholar
  57. Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Philosophy and EducationUniversity of TurinTurinItaly
  2. 2.Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal

Personalised recommendations