Advertisement

Synthese

pp 1–24 | Cite as

The ant colony as a test for scientific theories of consciousness

  • Daniel A. FriedmanEmail author
  • Eirik Søvik
Article

Abstract

The appearance of consciousness in the universe remains one of the major mysteries unsolved by science or philosophy. Absent an agreed-upon definition of consciousness or even a convenient system to test theories of consciousness, a confusing heterogeneity of theories proliferate. In pursuit of clarifying this complicated discourse, we here interpret various frameworks for the scientific and philosophical study of consciousness through the lens of social insect evolutionary biology. To do so, we first discuss the notion of a forward test versus a reverse test, analogous to the normal and revolutionary phases of the scientific process. Contemporary theories of consciousness are forward tests for consciousness, in that they strive to become a means to classify the level of consciousness of arbitrary states and systems. Yet no such theory of consciousness has earned sufficient confidence such that it might be actually used as a forward test in ambiguous settings. What is needed now is thus a legitimate reverse test for theories of consciousness, to provide internal and external calibration of different frameworks. A reverse test for consciousness would ideally look like a method for referencing theories of consciousness to a tractable (and non-human) model system. We introduce the Ant Colony Test (ACT) as a rigorous reverse test for consciousness. We show that social insect colonies, though disaggregated collectives, fulfill many of the prerequisites for conscious awareness met by humans and honey bee workers. A long lineage of philosophically-neutral neurobehavioral, evolutionary, and ecological studies on social insect colonies can thus be redeployed for the study of consciousness in general. We suggest that the ACT can provide insight into the nature of consciousness, and highlight the ant colony as a model system for ethically performing clarifying experiments about consciousness.

Keywords

Consciousness Social insects Ants Bees Ant colony Philosophy of science Scientific theories of consciousness 

Notes

Acknowledgements

We thank Tucker Chambers, Zach Phillips and Dr. Clint J. Perry for their comments on an earlier draft.

References

  1. Aaronson, S. (2014). Giulio Tononi and me: A phi-nal exchange. Shtetl-optimized blog. https://www.scottaaronson.com/blog/?p=1823. Accessed May 30, 2018.
  2. Adler, F. R., & Gordon, D. M. (2003). Optimization, conflict, and nonoverlapping foraging ranges in ants. The American Naturalist, 162(5), 529–543.CrossRefGoogle Scholar
  3. Adler, F. R., Quinonez, S., Plowes, N., & Adams, E. S. (2018). Mechanistic models of conflict between ant colonies and their consequences for territory scaling. American Naturalist, 192(2), 204–216.CrossRefGoogle Scholar
  4. Alem, S., Perry, C. J., Zhu, X., Loukola, O. J., Ingraham, T., Søvik, E., et al. (2016). Associative mechanisms allow for social learning and cultural transmission of string pulling in an insect. PLoS Biology, 14(10), e1002564.CrossRefGoogle Scholar
  5. Alexander, S. (2017). Why are transgender people immune to optical illusions? Slate star codex. http://slatestarcodex.com/2017/06/28/why-are-transgender-people-immune-to-optical-illusions/. Accessed October 5, 2018.
  6. Allen, C., & Trestman, M. (2017). Animal consciousness. In E. N. Zalta (Ed.) The stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/win2017/entries/consciousness-animal/. Accessed January 2, 2019.
  7. Animal welfare - Food Safety - European Commission. (2016). Food safety. https://ec.europa.eu/food/animals/welfare_en. Accessed October 23, 2018.
  8. Baluška, F., & Levin, M. (2016). On having no head: Cognition throughout biological systems. Frontiers in Psychology, 7, 902.CrossRefGoogle Scholar
  9. Barron, A. B., & Klein, C. (2016). What insects can tell us about the origins of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 113(18), 4900–4908.CrossRefGoogle Scholar
  10. Barron, A. B., Søvik, E., & Cornish, J. L. (2010). The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Frontiers in Behavioral Neuroscience, 4, 163.CrossRefGoogle Scholar
  11. Bateson, M., Desire, S., Gartside, S. E., & Wright, G. A. (2011). Agitated honeybees exhibit pessimistic cognitive biases. Current Biology: CB, 21(12), 1070–1073.CrossRefGoogle Scholar
  12. Bayne, T. (2018). On the axiomatic foundations of the integrated information theory of consciousness. Neuroscience of Consciousness, 2018(1), niy007.Google Scholar
  13. Bayne, T., & Carter, O. (2018). Dimensions of consciousness and the psychedelic state. Neuroscience of Consciousness, 2018(1), niy008.Google Scholar
  14. Bayne, T., Hohwy, J., & Owen, A. M. (2016). Are there levels of consciousness? Trends in Cognitive Sciences, 20(6), 405–413.CrossRefGoogle Scholar
  15. Bethell, E. J. (2015). A “how-to” guide for designing judgment bias studies to assess captive animal welfare. Journal of Applied Animal Welfare science: JAAWS, 18(sup1), S18–S42.CrossRefGoogle Scholar
  16. Bird, A. (2013). Thomas Kuhn. In E. N. Zalta (Ed.) The stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/fall2013/entries/thomas-kuhn/. Accessed January 2, 2019.
  17. Block, N. (1995a). On a confusion about a function of consciousness. The Behavioral and Brain Sciences, 18(2), 227–247.CrossRefGoogle Scholar
  18. Block, N. (1995b). How many concepts of consciousness? The Behavioral and Brain Sciences, 18(2), 272–287.CrossRefGoogle Scholar
  19. Block, N. (2007). Consciousness, accessibility, and the mesh between psychology and neuroscience. The Behavioral and Brain Sciences, 30(5–6), 481–499.Google Scholar
  20. Bochynek, T., Tanner, J. L., Meyer, B., & Burd, M. (2017). Parallel foraging cycles for different resources in leaf-cutting ants: A clue to the mechanisms of rhythmic activity. Ecological Entomology, 42(6), 849–852.CrossRefGoogle Scholar
  21. Boomsma, J. J., & Gawne, R. (2017). Superorganismality and caste differentiation as points of no return: How the major evolutionary transitions were lost in translation. Biological Reviews of the Cambridge Philosophical Society.  https://doi.org/10.1111/brv.12330.CrossRefGoogle Scholar
  22. Brancucci, A., Franciotti, R., D’Anselmo, A., Della Penna, S., & Tommasi, L. (2011). The sound of consciousness: Neural underpinnings of auditory perception. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(46), 16611–16618.CrossRefGoogle Scholar
  23. Bruineberg, J., Kiverstein, J., & Rietveld, E. (2016). The anticipating brain is not a scientist: The free-energy principle from an ecological-enactive perspective. Synthese, 195(6), 2417–2444.CrossRefGoogle Scholar
  24. Calabrò, R. S., Cacciola, A., Bramanti, P., & Milardi, D. (2015). Neural correlates of consciousness: What we know and what we have to learn! Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 36(4), 505–513.CrossRefGoogle Scholar
  25. Chalmers, D. (1996). On the search for the neural correlate of consciousness. Cogprints. http://cogprints.org/227/. Accessed October 4, 2018.
  26. Chalmers, D. (2017). The hard problem of consciousness. In S. Schneider & M. Velmans (Eds.), The blackwell companion to consciousness (Vol. 4, pp. 32–42). Chichester, UK: Wiley.CrossRefGoogle Scholar
  27. Cole, B. J. (1991). Short-term activity cycles in ants: Generation of periodicity by worker interaction. The American Naturalist, 137(2), 244–259.CrossRefGoogle Scholar
  28. Cole, D. (2014). The Chinese room argument. Stanford encyclopedia of philosophy. https://stanford.library.sydney.edu.au/entries/chinese-room/. Accessed October 8, 2018.
  29. Constant, A., Ramstead, M. J. D., Veissière, S. P. L., Campbell, J. O., & Friston, K. J. (2018). A variational approach to niche construction. Journal of the Royal Society, Interface/the Royal Society, 15(141), 20170685.CrossRefGoogle Scholar
  30. Cooper, P. D., Schaffer, W. M., & Buchmann, S. L. (1985). Temperature regulation of honey bees (Apis mellifera) foraging in the Sonoran desert. The Journal of Experimental Biology, 114(1), 1–15.Google Scholar
  31. Crick, F., & Koch, C. (1990). Towards a neurobiological theory of consciousness. Seminars in the Neurosciences, 2, 263–275.CrossRefGoogle Scholar
  32. Crick, F. C., & Koch, C. (2005). What is the function of the claustrum? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1458), 1271–1279.CrossRefGoogle Scholar
  33. Crompton, J. (1954). Ways of the ant. Boston: Houghton Mifflin.Google Scholar
  34. Damasio, A. (2000). The feeling of what happens: Body and emotion in the making of consciousness (1st ed.). ‎Wilmington: Mariner Books.Google Scholar
  35. Davidson, J. D., Arauco-Aliaga, R. P., Crow, S., Gordon, D. M., & Goldman, M. S. (2016). Effect of interactions between harvester ants on forager decisions. Frontiers in Ecology and Evolution, 4, 115.CrossRefGoogle Scholar
  36. Dawkins, M. S. (2012). Why animals matter: Animal consciousness, animal welfare, and human well-being (1st ed.). Oxford: Oxford University Press.Google Scholar
  37. De Sousa, A. (2013). Towards an integrative theory of consciousness: Part 1 (neurobiological and cognitive models). Mens Sana Monographs, 11(1), 100–150.CrossRefGoogle Scholar
  38. Decker, K. S. (2013). Enders game and philosophy the logic gate is down. Hoboken: Wiley.CrossRefGoogle Scholar
  39. Dehaene, S., Lau, H., & Kouider, S. (2017). What is consciousness, and could machines have it? Science, 358(6362), 486–492.CrossRefGoogle Scholar
  40. Dennett, D. (2001). Are we explaining consciousness yet? Cognition, 79(1–2), 221–237.CrossRefGoogle Scholar
  41. Dennett, D. C. (1995). Animal Consciousness: What matters and why. Social Research, 62(3), 691–710.Google Scholar
  42. Dennett, D. C. (1996). Darwin’s dangerous idea: Evolution and the meanings of life. New York City: Simon and Schuster.Google Scholar
  43. Dennett, D. C. (2017). From bacteria to bach and back: The evolution of minds. New York City: W.W. Norton.Google Scholar
  44. Doesburg, S. M., Green, J. J., McDonald, J. J., & Ward, L. M. (2009). Rhythms of consciousness: Binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception. PLoS ONE, 4(7), e6142.CrossRefGoogle Scholar
  45. Entler, B. V., Cannon, J. T., & Seid, M. A. (2016). Morphine addiction in ants: A new model for self-administration and neurochemical analysis. The Journal of Experimental Biology, 219(Pt 18), 2865–2869.CrossRefGoogle Scholar
  46. Fabbro, F., Aglioti, S. M., Bergamasco, M., Clarici, A., & Panksepp, J. (2015). Evolutionary aspects of self- and world consciousness in vertebrates. Frontiers in Human Neuroscience, 9, 157.CrossRefGoogle Scholar
  47. Fazekas, P., & Overgaard, M. (2016). Multidimensional models of degrees and levels of consciousness. Trends in Cognitive Sciences, 20(10), 715–716.CrossRefGoogle Scholar
  48. Feinerman, O., & Korman, A. (2017). Individual versus collective cognition in social insects. The Journal of Experimental Biology, 220(Pt 1), 73–82.CrossRefGoogle Scholar
  49. Fekete, T., van Leeuwen, C., & Edelman, S. (2016). System, subsystem, hive: Boundary problems in computational theories of consciousness. Frontiers in Psychology, 7, 1041.CrossRefGoogle Scholar
  50. Feuillet, L., Dufour, H., & Pelletier, J. (2007). Brain of a white-collar worker. The Lancet, 370(9583), 262.CrossRefGoogle Scholar
  51. Flanagan, T. P., Pinter-Wollman, N. M., Moses, M. E., & Gordon, D. M. (2013). Fast and flexible: Argentine ants recruit from nearby trails. PLoS ONE, 8(8), e70888.CrossRefGoogle Scholar
  52. Fleischmann, P. N., Rössler, W., & Wehner, R. (2018). Early foraging life: Spatial and temporal aspects of landmark learning in the ant Cataglyphis noda. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology.  https://doi.org/10.1007/s00359-018-1260-6.CrossRefGoogle Scholar
  53. Fossat, P., Bacqué-Cazenave, J., De Deurwaerdère, P., Delbecque, J.-P., & Cattaert, D. (2014). Comparative behavior. Anxiety-like behavior in crayfish is controlled by serotonin. Science, 344(6189), 1293–1297.CrossRefGoogle Scholar
  54. Friedman, D. A., & Gordon, D. M. (2016). Ant genetics: Reproductive physiology, worker morphology, and behavior. Annual Review of Neuroscience, 39(1), 41–56.CrossRefGoogle Scholar
  55. Friedman, D. A., Pilko, A., Skowronska-Krawczyk, D., Krasinska, K., Parker, J. W., Hirsh, J., et al. (2018). The role of dopamine in the collective regulation of foraging in harvester ants. iScience.  https://doi.org/10.1016/j.isci.2018.09.001.CrossRefGoogle Scholar
  56. Friston, K. (2012). The history of the future of the Bayesian brain. NeuroImage, 62(2), 1230–1233.CrossRefGoogle Scholar
  57. Friston, K. (2017a). Sentient dynamics: The kiss of chaos * through the markov blanket. Chaos and Complexity Letters; Hauppauge, 11(1), 117–140.Google Scholar
  58. Friston, K. (2017b). Consciousness is not a thing, but a process of inference—Karl Friston | Aeon Essays. Aeon. Aeon. https://aeon.co/essays/consciousness-is-not-a-thing-but-a-process-of-inference. Accessed October 19, 2017.
  59. Friston, K. (2018). Am i self-conscious? (or does self-organization entail self-consciousness?). Frontiers in Psychology, 9, 579.CrossRefGoogle Scholar
  60. Friston, K., Martin, F., & Friedman, D. A. (2018). Of woodlice and men. ALIUS Bulletin, 2, 17–43.Google Scholar
  61. Gilbert, S. F., Sapp, J., & Tauber, A. I. (2012). A symbiotic view of life: We have never been individuals. The Quarterly Review of Biology, 87(4), 325–341.CrossRefGoogle Scholar
  62. Giurfa, M. (2013). Cognition with few neurons: Higher-order learning in insects. Trends in Neurosciences, 36(5), 285–294.CrossRefGoogle Scholar
  63. Goff, P. (2017). Consciousness and fundamental reality. New York: Oxford University Press.CrossRefGoogle Scholar
  64. Gordon, D. M. (1983). The relation of recruitment rate to activity rhythms in the harvester ant, Pogonomyrmex barbatus (F. Smith) (Hymenoptera: Formicidae). Journal of the Kansas Entomological Society, 56(3), 277–285.Google Scholar
  65. Gordon, D. M. (1986). The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Animal Behaviour, 34(5), 1402–1419.CrossRefGoogle Scholar
  66. Gordon, D. M. (1989). Dynamics of task switching in harvester ants. Animal Behaviour, 38(2), 194–204.CrossRefGoogle Scholar
  67. Gordon, D. M. (1992). Wittgenstein and ant-watching. Biology & Philosophy, 7(1), 13–25.CrossRefGoogle Scholar
  68. Gordon, D. M. (1995). The development of an ant colony’s foraging range. Animal Behaviour, 49(3), 649–659.CrossRefGoogle Scholar
  69. Gordon, D. M. (2010). Ant encounters: Interaction networks and colony behavior. Princeton: Princeton University Press.CrossRefGoogle Scholar
  70. Gordon, D. M. (2013). The rewards of restraint in the collective regulation of foraging by harvester ant colonies. Nature, 498(7452), 91–93.CrossRefGoogle Scholar
  71. Gordon, D. M. (2014). The ecology of collective behavior. PLoS Biology, 12(3), e1001805.CrossRefGoogle Scholar
  72. Gordon, D. M., Goodwin, B. C., & Trainor, L. E. H. (1992). A parallel distributed model of the behaviour of ant colonies. Journal of Theoretical Biology, 156(3), 293–307.CrossRefGoogle Scholar
  73. Gordon, D. M., & Mehdiabadi, N. J. (1999). Encounter rate and task allocation in harvester ants. Behavioral Ecology and Sociobiology, 45(5), 370–377.CrossRefGoogle Scholar
  74. Grossberg, S. (2017). Towards solving the hard problem of consciousness: The varieties of brain resonances and the conscious experiences that they support. Neural Networks: The Official Journal of the International Neural Network Society, 87, 38–95.CrossRefGoogle Scholar
  75. Guterstam, A., Björnsdotter, M., Gentile, G., & Ehrsson, H. H. (2015). Posterior cingulate cortex integrates the senses of self-location and body ownership. Current Biology: CB, 25(11), 1416–1425.CrossRefGoogle Scholar
  76. Hameroff, S. (2012). How quantum brain biology can rescue conscious free will. Frontiers in Integrative Neuroscience, 6(October), 93.Google Scholar
  77. Hameroff, S., & Penrose, R. (2014). Consciousness in the universe: A review of the “Orch OR” theory. Physics of Life Reviews, 11(1), 39–78.CrossRefGoogle Scholar
  78. Hasegawa, E., Ishii, Y., Tada, K., Kobayashi, K., & Yoshimura, J. (2016). Lazy workers are necessary for long-term sustainability in insect societies. Scientific Reports, 6, 20846.CrossRefGoogle Scholar
  79. Hayashi, Y., Yuki, M., Sugawara, K., Kikuchi, T., & Tsuji, K. (2012). Rhythmic behavior of social insects from single to multibody. Robotics and Autonomous Systems, 60(5), 714–721.CrossRefGoogle Scholar
  80. Hendricks, M. (2015). Neuroecology: Tuning foraging strategies to environmental variability. Current Biology: CB, 25(12), R498–R500.CrossRefGoogle Scholar
  81. Hill, C. S. (2016). Insects: Still looking like zombies. Animal Sentience: An Interdisciplinary Journal on Animal Feeling, 1(9), 20.Google Scholar
  82. Hofstadter, D. R. (1981). Prelude… ant fugue. The Mind’s I: Fantasies and Reflections on Self and Soul, 149.Google Scholar
  83. Hofstadter, D. R. (2007). I am a strange loop. New York: Basic Books.Google Scholar
  84. Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  85. Johnson, B. R., & Linksvayer, T. A. (2010). Deconstructing the superorganism: Social physiology, groundplans, and sociogenomics. The Quarterly Review of Biology, 85(1), 57–79.CrossRefGoogle Scholar
  86. Jonas, E., & Kording, K. P. (2017). Could a neuroscientist understand a microprocessor? PLoS Computational Biology, 13(1), e1005268.CrossRefGoogle Scholar
  87. Kellert, S. H., Longino, H. E., & Kenneth Waters, C. (2006). Scientific pluralism. Minneapolis: University of Minnesota Press.Google Scholar
  88. Key, B. (2016). Why fish do not feel pain. Animal Sentience, 1(3), 1.Google Scholar
  89. Key, B., & Brown, D. (2018). Designing brains for pain: Human to mollusc. Frontiers in Physiology, 9, 1027.CrossRefGoogle Scholar
  90. Kim, I. S., & Dickinson, M. H. (2017). Idiothetic path integration in the fruit fly Drosophila melanogaster. Current Biology: CB, 27(15), 2227.e3–2238.e3.Google Scholar
  91. Kirchhoff, M., Parr, T., Palacios, E., Friston, K., & Kiverstein, J. (2018). The Markov blankets of life: Autonomy, active inference and the free energy principle. Journal of the Royal Society, Interface/the Royal Society, 15(138), 20170792.CrossRefGoogle Scholar
  92. Klein, C., & Barron, A. B. (2016). Insect consciousness: Commitments, conflicts and consequences. Animal Sentience: An Interdisciplinary Journal on Animal Feeling, 1(9), 21.Google Scholar
  93. Koch, C. (2014). Neuronal “Superhub” might generate consciousness. Scientific American.  https://doi.org/10.1038/scientificamericanmind1114-24.CrossRefGoogle Scholar
  94. Koch, C., Massimini, M., Boly, M., & Tononi, G. (2016). Neural correlates of consciousness: Progress and problems. Nature Reviews Neuroscience, 17(5), 307–321.CrossRefGoogle Scholar
  95. Kurthen, M., Grunwald, T., & Elger, C. E. (1998). Will there be a neuroscientific theory of consciousness? Trends in Cognitive Sciences, 2(6), 229–234.CrossRefGoogle Scholar
  96. Lacalli, T. (2018). Amphioxus neurocircuits, enhanced arousal, and the origin of vertebrate consciousness. Consciousness and Cognition.  https://doi.org/10.1016/j.concog.2018.03.006.CrossRefGoogle Scholar
  97. LaRock, E. (2006). Why neural synchrony fails to explain the unity of visual consciousness. Behavior and Philosophy, 34, 39–58.Google Scholar
  98. Lasseter, J., & Stanton, A. (1998). A bug’s life. USA. https://www.imdb.com/title/tt0120623/. Accessed January 2, 2019.
  99. Laubichler, M. D., Stadler, P. F., Prohaska, S. J., & Nowick, K. (2015). The relativity of biological function. Theory in Biosciences = Theorie in den Biowissenschaften, 134(3–4), 143–147.CrossRefGoogle Scholar
  100. Linksvayer, T. A. (2015). Chapter eight—The molecular and evolutionary genetic implications of being truly social for the social insects. In A. Zayed & C. F. Kent (Eds.), Advances in insect physiology (Vol. 48, pp. 271–292). Cambridge: Academic Press.Google Scholar
  101. Longino, H. E. (2000). Toward an epistemology for biological pluralism. In Biology and Epistemology, pp. 261–286.Google Scholar
  102. Longino, H. E. (2013). Studying human behavior (pp. 3430623–3430810). University of Chicago Press. http://www.press.uchicago.edu/ucp/books/book/chicago/S/bo13025491.html. Accessed December 11, 2017.
  103. Low, P., Panksepp, J., Reiss, D., Edelman, D., Van Swinderen, B., & Koch, C. (2012). The Cambridge declaration on consciousness. In Francis crick memorial conference, Cambridge, England.Google Scholar
  104. Mallatt, J., & Feinberg, T. E. (2016). Insect consciousness: Fine-tuning the hypothesis. Animal Sentience: An Interdisciplinary Journal on Animal Feeling, 1(9), 10.Google Scholar
  105. Mangan, B. (1993). Dennett, consciousness, and the sorrows of functionalism. Consciousness and Cognition, 2(1), 1–17.CrossRefGoogle Scholar
  106. Marshall, J. A. R., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., & Franks, N. R. (2009). On optimal decision-making in brains and social insect colonies. Journal of the Royal Society, Interface/the Royal Society, 6(40), 1065–1074.CrossRefGoogle Scholar
  107. Marvel. (2015). Ant–man (film). Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Ant-Man_(film)&oldid=862864493. Accessed October 9, 2018.
  108. Mashour, G. A. (2018). The controversial correlates of consciousness. Science, 360(6388), 493–494.CrossRefGoogle Scholar
  109. Mashour, G. A., & Alkire, M. T. (2013). Evolution of consciousness: Phylogeny, ontogeny, and emergence from general anesthesia. Proceedings of the National Academy of Sciences of the United States of America, 110(Suppl 2), 10357–10364.CrossRefGoogle Scholar
  110. Mather, J. A., & Carere, C. (2016). Cephalopods are best candidates for invertebrate consciousness. Animal sentience: An. http://animalstudiesrepository.org/cgi/viewcontent.cgi?article=1127&context=animsent. Accessed January 2, 2019.
  111. Matthes, J., Davis, C. S., & Potter, R. F. (Eds.). (2017). Normal science and paradigm shift. In The international encyclopedia of communication research methods (Vol. 55, pp. 1–17). Hoboken, NJ, USA: Wiley.Google Scholar
  112. Mendl, M., Burman, O. H. P., Parker, R. M. A., & Paul, E. S. (2009). Cognitive bias as an indicator of animal emotion and welfare: Emerging evidence and underlying mechanisms. Applied Animal Behaviour Science, 118(3), 161–181.CrossRefGoogle Scholar
  113. Mitchell, S. D. (2002). Integrative pluralism. Biology and Philosophy, 17(1), 55–70.CrossRefGoogle Scholar
  114. Moor, J. H. (2012). The turing test: The elusive standard of artificial intelligence. Berlin: Springer.Google Scholar
  115. Morin, A. (2006). Levels of consciousness and self-awareness: A comparison and integration of various neurocognitive views. Consciousness and Cognition, 15(2), 358–371.CrossRefGoogle Scholar
  116. Nagel, T. (1974). What is it like to be a bat? The Philosophical Review, 83(4), 435–450.CrossRefGoogle Scholar
  117. Newen, A., & Vogeley, K. (2003). Self-representation: Searching for a neural signature of self-consciousness. Consciousness and Cognition, 12(4), 529–543.CrossRefGoogle Scholar
  118. Noble, D. (2013). A biological relativity view of the relationships between genomes and phenotypes. Progress in Biophysics and Molecular Biology, 111(2–3), 59–65.CrossRefGoogle Scholar
  119. Núñez, J. A., & Giurfa, M. (1996). Motivation and regulation of honey bee foraging. Bee World, 77(4), 182–196.CrossRefGoogle Scholar
  120. O’Sullivan, J. (2010). Collective consciousness in science fiction. Foundations. http://search.proquest.com/openview/036b39d2d8caf299d7e01c8ed5ada97b/1?pq-origsite=gscholar&cbl=636386. Accessed January 2, 2019.
  121. Overgaard, M. (2017). The status and future of consciousness research. Frontiers in Psychology, 8, 1719.CrossRefGoogle Scholar
  122. Panksepp, J. (2004). Affective neuroscience: The foundations of human and animal emotions. Oxford: Oxford University Press.Google Scholar
  123. Panksepp, J. (2011). Toward a cross-species neuroscientific understanding of the affective mind: Do animals have emotional feelings? American Journal of Primatology, 73(6), 545–561.CrossRefGoogle Scholar
  124. Pereboom, D. (2016). Illusionism and anti-functionalism about phenomenal consciousness. Journal of Consciousness Studies, 23(11–12), 172–185.Google Scholar
  125. Perry, C. J., Baciadonna, L., & Chittka, L. (2016). Unexpected rewards induce dopamine-dependent positive emotion–like state changes in bumblebees. Science, 353(6307), 1529–1531.CrossRefGoogle Scholar
  126. Phillips, Z. I., Zhang, M. M., & Mueller, U. G. (2017). Dispersal of Attaphila fungicola, a symbiotic cockroach of leaf-cutter ants. Insectes Sociaux, 64(2), 1–8.CrossRefGoogle Scholar
  127. Portha, S., Deneubourg, J.-L., & Detrain, C. (2002). Self-organized asymmetries in ant foraging: A functional response to food type and colony needs. Behavioral Ecology: Official Journal of the International Society for Behavioral Ecology, 13(6), 776–781.CrossRefGoogle Scholar
  128. Proverbs. (n.d.). Bible. Bible. https://www.biblegateway.com/passage/?search=Proverbs+6%3A6-8&version=NIV. Accessed October 8, 2018.
  129. Ramstead, M. J. D., Badcock, P. B., & Friston, K. J. (2017). Answering Schrödinger’s question: A free-energy formulation. Physics of Life Reviews.  https://doi.org/10.1016/j.plrev.2017.09.001.CrossRefGoogle Scholar
  130. Richardson, T. O., Liechti, J. I., Stroeymeyt, N., Bonhoeffer, S., & Keller, L. (2017). Short-term activity cycles impede information transmission in ant colonies. PLoS Computational Biology, 13(5), e1005527.CrossRefGoogle Scholar
  131. Robinson, E. J. H. (2014). Polydomy: The organisation and adaptive function of complex nest systems in ants. Current Opinion in Insect Science, 5, 37–43.CrossRefGoogle Scholar
  132. Ross, D., & Spurrett, D. (2004). What to say to a skeptical metaphysician: A defense manual for cognitive and behavioral scientists. The Behavioral and Brain Sciences, 27(5), 603–627.Google Scholar
  133. Sakiyama, T., & Gunji, Y.-P. (2013). The Müller–Lyer illusion in ant foraging. PLoS ONE, 8(12), e81714.CrossRefGoogle Scholar
  134. Sakiyama, T., & Gunji, Y.-P. (2016). The Kanizsa triangle illusion in foraging ants. BioSystems, 142–143, 9–14.CrossRefGoogle Scholar
  135. Sapolsky, R. M. (2004). The frontal cortex and the criminal justice system. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359(1451), 1787–1796.CrossRefGoogle Scholar
  136. Sapolsky, R. M. (2017). Behave: The biology of humans at our best and worst. City of Westminster: Penguin Press.Google Scholar
  137. Schmidt, H., Avitabile, D., Montbrió, E., & Roxin, A. (2018). Network mechanisms underlying the role of oscillations in cognitive tasks. PLoS Computational Biology, 14(9), e1006430.CrossRefGoogle Scholar
  138. Schwitzgebel, E. (2014). Tononi’s exclusion postulate would make consciousness (nearly) irrelevant. The splintered mind. http://schwitzsplinters.blogspot.com/2014/07/tononis-exclusion-postulate-would-make.html. Accessed October 11, 2018.
  139. Schwitzgebel, E. (2015). If materialism is true, the United States is probably conscious. Philosophical Studies, 172(7), 1697–1721.CrossRefGoogle Scholar
  140. Schwitzgebel, E. (2018a). An argument against every general theory of consciousness. The splintered mind. https://schwitzsplinters.blogspot.com/2018/05/an-argument-against-every-single.html? Accessed May 28, 2018.
  141. Schwitzgebel, E. (2018b). Are garden snails conscious? Yes, no, or *gong*. The splintered mind. http://schwitzsplinters.blogspot.com/2018/09/are-garden-snails-conscious-yes-no-or.html. Accessed October 8, 2018.
  142. Searle, J. R. (2002). Consciousness and language. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  143. Seeley, T. D., & Levien, R. A. (1987). A colony of mind. The Sciences, 27(4), 39–42.CrossRefGoogle Scholar
  144. Seth, A. K., Izhikevich, E., Reeke, G. N., & Edelman, G. M. (2006). Theories and measures of consciousness: An extended framework. Proceedings of the National Academy of Sciences of the United States of America, 103(28), 10799–10804.CrossRefGoogle Scholar
  145. Shanahan, M. (2016). Consciousness as integrated perception, motivation, cognition, and action. Animal Sentience, 1(9), 12.Google Scholar
  146. Shoemaker, S. (1993). Functionalism and consciousness. Ciba Foundation Symposium, 174, 14–21.Google Scholar
  147. Shtonda, B. B., & Avery, L. (2006). Dietary choice behavior in Caenorhabditis elegans. The Journal of Experimental Biology, 209(Pt 1), 89–102.CrossRefGoogle Scholar
  148. Sihn, W. (1997). Paradigm shift in the corporation: The fractal company. IFAC Proceedings Volumes, 30(19), 131–136.CrossRefGoogle Scholar
  149. Silvertown, J., & Gordon, D. M. (1989). A framework for plant behavior. Annual Review of Ecology and Systematics, 20(1), 349–366.CrossRefGoogle Scholar
  150. Singer, P. (1975). Animal liberation. New York City: Harper Collins.Google Scholar
  151. Singer, W. (1999). Neuronal synchrony: A versatile code for the definition of relations? Neuron, 24(1), 49–65.CrossRefGoogle Scholar
  152. Smith, D. W. (2018). Phenomenology. In E. N. Zalta (Ed.) The stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/sum2018/entries/phenomenology/. Accessed January 2, 2019.
  153. Sokolowski, M. B. (2010). Social interactions in “simple” model systems. Neuron, 65(6), 780–794.CrossRefGoogle Scholar
  154. Søvik, E., & Perry, C. (2016). The evolutionary history of consciousness. Animal Sentience: An Interdisciplinary Journal on Animal Feeling, 1(9), 19.Google Scholar
  155. Stern, S., Kirst, C., & Bargmann, C. I. (2017). Neuromodulatory control of long-term behavioral patterns and individuality across development. Cell, 171(7), 1649.e10–1662.e10.CrossRefGoogle Scholar
  156. Tabery, J., Preda, A., & Longino, H. (2014). Pluralism, social action and the causal space of human behavior. Metascience, 23(3), 443–459.CrossRefGoogle Scholar
  157. Theraulaz, G. (2014). Embracing the creativity of stigmergy in social insects. Architectural Design, 84(5), 54–59.CrossRefGoogle Scholar
  158. Theraulaz, G., & Bonabeau, E. (1999). A brief history of stigmergy. Artificial Life, 5(2), 97–116.CrossRefGoogle Scholar
  159. Tinbergen, N. (1963). On aims and methods of ethology. Ethology: Formerly Zeitschrift fur Tierpsychologie, 20(4), 410–433.Google Scholar
  160. Toadvine, T. (2018). Maurice Merleau-Ponty. In E. N. Zalta (Ed.) The stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2018/entries/merleau-ponty/. Accessed January 2, 2019.
  161. Toda, K., & Platt, M. L. (2015). Animal cognition: Monkeys pass the mirror test. Current Biology: CB, 25(2), R64–R66.CrossRefGoogle Scholar
  162. Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: From consciousness to its physical substrate. Nature Reviews. Neuroscience, 17(7), 450–461.CrossRefGoogle Scholar
  163. Tononi, G., & Koch, C. (2015). Consciousness: Here, there and everywhere? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1668), 20140167.CrossRefGoogle Scholar
  164. Tsuchiya, N., Wilke, M., Frässle, S., & Lamme, V. A. F. (2015). No-report paradigms: Extracting the true neural correlates of consciousness. Trends in Cognitive Sciences, 19(12), 757–770.CrossRefGoogle Scholar
  165. Turing, A. M. (1950). I.—Computing machinery and intelligence. Mind; a Quarterly Review of Psychology and Philosophy, LIX(236), 433–460.CrossRefGoogle Scholar
  166. Uhlhaas, P. J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., et al. (2009). Neural synchrony in cortical networks: History, concept and current status. Frontiers in Integrative Neuroscience, 3, 17.CrossRefGoogle Scholar
  167. Van Gulick, R. (2018). Consciousness. In E. N. Zalta (Ed.) The stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/spr2018/entries/consciousness/. Accessed January 2, 2019.
  168. Walter, H. (2009). Neurophilosophy of free will: From Libertarian illusions to a concept of natural autonomy. Cambridge: MIT Press.Google Scholar
  169. Ward, P. S. (2014). The phylogeny and evolution of ants. Annual Review of Ecology, Evolution, and Systematics, 45(1), 140822120436000.CrossRefGoogle Scholar
  170. Wehner, R. (2003). Desert ant navigation: How miniature brains solve complex tasks. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 189(8), 579–588.CrossRefGoogle Scholar
  171. Wheeler, W. M. (1911). The ant-colony as an organism. Journal of Morphology, 22(2), 307–325.CrossRefGoogle Scholar
  172. Wilson, R. A. (2017). Collective intentionality in non-human animals. Routledge handbook on collective. http://robwilson-philosophy.s3.amazonaws.com/mind/CollectIntentCorrectedProofsJuly2017.pdf. Accessed January 2, 2019.
  173. Winston, M. L., Higo, H. A., & Slessor, K. N. (1990). Effect of various dosages of queen mandibular gland pheromone on the inhibition of queen rearing in the honey bee (Hymenoptera: Apidae). Annals of the Entomological Society of America, 83(2), 234–238.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BiologyStanford UniversityStanfordUSA
  2. 2.Department of Science and MathematicsVolda University CollegeVoldaNorway

Personalised recommendations