pp 1–17 | Cite as

Productive theory-ladenness in fMRI

  • M. Emrah AktuncEmail author
S.I.: Neuroscience and Its Philosophy


Several developments for diverse scientific goals, mostly in physics and physiology, had to take place, which eventually gave us fMRI as one of the central research paradigms of contemporary cognitive neuroscience. This technique stands on solid foundations established by the physics of magnetic resonance and the physiology of hemodynamics and is complimented by computational and statistical techniques. I argue, and support using concrete examples, that these foundations give rise to a productive theory-ladenness in fMRI, which enables researchers to identify and control for the types of methodological and inferential errors. Consequently, this makes it possible for researchers to represent and investigate cognitive phenomena in terms of hemodynamic data and for experimental knowledge to grow independently of large scale theories of cognition.


Productive theory-ladenness fMRI Error Experimental knowledge Cognitive neuroscience 



  1. Aktunc, M. E. (2011). Experimental knowledge in cognitive neuroscience: Evidence, errors, and inference. PhD diss., Virginia Polytechnic Institute and State University.Google Scholar
  2. Babiloni, C., Vecchio, F., Cappa, S., Pasqualetti, P., Rossi, S., Miniussi, C., et al. (2006). Functional frontoparietal connectivity during encoding and retrieval processes follows HERA model: A high-resolution study. Brain Research Bulletin, 68, 203–212.CrossRefGoogle Scholar
  3. Baddeley, A. D. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36(3), 189–208.CrossRefGoogle Scholar
  4. Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 8). London: Academic Press.Google Scholar
  5. Bechtel, W. (2002a). Decomposing the mind-brain: A long-term pursuit. Brain and Mind, 3, 229–242.CrossRefGoogle Scholar
  6. Bechtel, W. (2002b). Aligning multiple research techniques in cognitive neuroscience: Why is it important? Philosophy of Science, 69, S48–S58.CrossRefGoogle Scholar
  7. Chang, H. (2012). Is water H 2 O?: Evidence, realism and pluralism. London: Springer.CrossRefGoogle Scholar
  8. Cole, M. A. (2006). Effects of goal-setting on memory performance in young and older adults: A functional magnetic resonance imaging (fMRI) study. Dissertation Abstracts International: Section B: The Sciences and Engineering, 5134.Google Scholar
  9. Coltheart, M. (2006). What has functional neuroimaging told us about the mind (so far)? Cortex, 42, 323–331.CrossRefGoogle Scholar
  10. Coltheart, M. (2010). What is functional neuroimaging for? In S. J. Hanson & M. Bunzl (Eds.), Foundational issues in human brain mapping. Cambridge, MA: The MIT Press.Google Scholar
  11. Duhem, P. (1906/1991). The aim and structure of physical theory [Translated from the French by Philip P. Wiener]. Princeton, NJ: Princeton University Press.Google Scholar
  12. Gabrieli, J. D. E., Poldrack, R. A., & Desmond, J. E. (1998). The role of left prefrontal cortex in language and memory. Proceedings of the National Academy of Sciences, 95, 906–913.CrossRefGoogle Scholar
  13. Habib, R., Nyberg, L., & Tulving, E. (2003). Hemispheric asymmetries of memory: The HERA model revisited. Trends in Cognitive Sciences, 7, 241–245.CrossRefGoogle Scholar
  14. Hacking, I. (1983). Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  15. Hanson, N. R. (1958). Patterns of discovery. Cambridge: Cambridge University Press.Google Scholar
  16. Hardcastle, V. G., & Stewart, C. M. (2002). What do brain data really show? Philosophy of Science, 69, S72–S82.CrossRefGoogle Scholar
  17. Hashemi, R. H., Bradley, W. G., Jr., & Lisanti, C. J. (2010). MRI: The basics (3rd ed.). Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
  18. Heidelberger, M. (2003). Theory-ladenness and scientific instruments in experimentation. In H. Radder (Ed.), The philosophy of scientific experimentation (pp. 138–151). Pittsburgh, PA: University of Pittsburgh Press.CrossRefGoogle Scholar
  19. Henson, R. (2005). What can functional neuroimaging tell the experimental psychologist. The Quarterly Journal of Experimental Psychology, 58A, 193–233.CrossRefGoogle Scholar
  20. Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Functional magnetic resonance imaging. Sunderland, MA: Sinauer Associates, Inc., Publishers.Google Scholar
  21. Huettel, S. A., Song, A. W., & McCarthy, G. (2008). Functional magnetic resonance imaging (2nd ed.). Sunderland, MA: Sinauer Associates, Inc., Publishers.Google Scholar
  22. James, W. (1890). The principles of psychology. New York, NY: Henry Holt and Co.Google Scholar
  23. Kelley, W. L., Miezin, F. M., McDermott, K., Buckner, R. L., Raichle, M. E., Cohen, N. J., et al. (1998). Hemispheric specialization in human dorsal frontal cortex and medial temporal lobes for verbal and nonverbal memory encoding. Neuron, 20, 927–936.CrossRefGoogle Scholar
  24. Klein, C. (2010). Philosophical issues in neuroimaging. Philosophy Compass, 5, 186–198.CrossRefGoogle Scholar
  25. Kuhn, T. (1962/2012). The structure of scientific revolutions (4 ed.). Chicago, IL: The University of Chicago Press.Google Scholar
  26. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, P. B., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of National Academy of Sciences, 89(12), 5675–5679.CrossRefGoogle Scholar
  27. LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger, S., Rehm, K., et al. (2003). The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. NeuroImage, 18, 10–27.CrossRefGoogle Scholar
  28. Lazar, N. A. (2008). The statistical analysis of functional MRI data. New York, NY: Springer.Google Scholar
  29. Le Bihan, D. (2014). Looking inside the brain: The power of neuroimaging. Princeton, NJ: Princeton University Press.Google Scholar
  30. MacCorquodale, K., & Meehl, P. E. (1948). On a distinction between hypothetical constructs and intervening variables. Psychological Review, 55, 95–107.CrossRefGoogle Scholar
  31. Mayo, D. (1996). Error and the growth of experimental knowledge. Chicago, IL: The University of Chicago Press.CrossRefGoogle Scholar
  32. Mayo, D., & Spanos, A. (2011). Error statistics. In P. S. Bandyopadhyay & M. Forster (Eds.), The handbook of philosophy of science. Volume 7: Philosophy of statistics. Amsterdam: Elsevier Publishers.Google Scholar
  33. Meehl, P. E. (1967). Theory-testing in psychology and physics: A methodological paradox. Philosophy of Science, 34, 103–115.CrossRefGoogle Scholar
  34. Nathan, M. J., & Del Pinal, G. (2017). The future of cognitive neuroscience? Reverse inference in focus. Philosophy Compass, 12, e12427.CrossRefGoogle Scholar
  35. Nyberg, L., Cabeza, R., & Tulving, E. (1996). PET studies of encoding and retrieval: The HERA model. Psychonomic Bulletin & Review, 3, 135–148.CrossRefGoogle Scholar
  36. Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of National Academy of Sciences, 89(13), 5951–5955.CrossRefGoogle Scholar
  37. Okamoto, M., Wada, Y., Yamaguchi, Y., Kyutoku, Y., Clowney, L., Singh, A. K., et al. (2011). Process-specific prefrontal contributions to episodic encoding and retrieval of tastes: A functional NIRS study. NeuroImage, 54, 1578–1588.CrossRefGoogle Scholar
  38. Roskies, A. (2008). Neuroimaging and inferential distance. Neuroethics, 1, 19–30.CrossRefGoogle Scholar
  39. Roskies, A. (2009). Brain-mind and structure–function relationships: A methodological response to Coltheart. Philosophy of Science, 76, 927–939.CrossRefGoogle Scholar
  40. Roskies, A. (2010a). Neuroimaging and inferential distance. In S. J. Hanson & M. Bunzl (Eds.), Foundational issues in human brain mapping. Cambridge, MA: The MIT Press.Google Scholar
  41. Roskies, A. (2010b). Saving subtraction: A reply to Van Orden and Paap. British Journal for the Philosophy of Science, 61, 635–665.CrossRefGoogle Scholar
  42. Savoy, R. L. (2001). History and future directions of human brain mapping and functional neuroimaging. Acta Psychologica, 107, 9–42.CrossRefGoogle Scholar
  43. Strother, S. C., Anderson, J., Hansen, L. K., Kjems, U., Kustra, R., Sidtis, J., et al. (2002). The quantitative evaluation of functional neuroimaging experiments: The NPAIRS data analysis framework. NeuroImage, 15, 747–771.CrossRefGoogle Scholar
  44. Thimm, M., Krug, A., Markov, V., Krach, S., Jansen, A., Zerres, K., et al. (2010). The impact of dystrobrevin-binding protein I (DTNBPI) on neural correlates of episodic memory encoding and retrieval. Human Brain Mapping, 31, 203–209.Google Scholar
  45. Tulving, E., Kapur, S., Craik, F. I. M., Moscovitch, M., & Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences, 91, 2016–2020.CrossRefGoogle Scholar
  46. Uttal, W. (2001). The new phrenology: The limits of localizing cognitive processes in the brain. Cambridge, MA: MIT Press.Google Scholar
  47. Uttal, W. (2002a). Functional brain mapping—What is it good for? Plenty, but not everything! (A Reply to Malcolm J. Avison). Brain and Mind, 3, 375–379.CrossRefGoogle Scholar
  48. Uttal, W. (2002b). Précis of The new phrenology: The limits of localizing cognitive processes in the brain. Brain and Mind, 3, 221–228.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Ozyegin UniversityIstanbulTurkey

Personalised recommendations