pp 1–16 | Cite as

Make up your mind: octopus cognition and hybrid explanations

  • Sidney Carls-DiamanteEmail author
S.I.: Explanations in Cognitive Science: Unification vs Pluralism


In order to argue that cognitive science should be more accepting of explanatory plurality, this paper presents the control of fetching movements in the octopus as an exemplar of a cognitive process that comprises distinct and non-redundant representation-using and non-representational elements. Fetching is a type of movement that representational analyses can normally account for completely—but not in the case of the octopus. Instead, a comprehensive account of octopus fetching requires the non-overlapping use of both representational and non-representational explanatory frameworks. What this need for a pluralistic or hybrid explanation implies is that cognitive science should be more open to using both representational and non-representational accounts of cognition, depending on their respective appropriateness to the type of cognition in question.


Hybrid explanations Explanatory pluralism Octopus cognition 



I am grateful to the following people for their comments and feedback: Glenn Carruthers, Emily C. Parke, Iván Gonzalez-Cabrera, and the anonymous reviewers of this paper.


  1. Adams, F., & Aizawa, K. (2010). The bounds of cognition. Malden, MA: Wiley.CrossRefGoogle Scholar
  2. Anderson, R. C., Mather, J. A., Monette, M. Q., & Zimsen, S. R. M. (2010). Octopuses (Enteroctopus dofleini) recognize individual humans. Journal of Applied Animal Welfare Science, 13, 261–272.CrossRefGoogle Scholar
  3. Barsalou, L. C. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.Google Scholar
  4. Bechtel, W. (1998). Representations and cognitive explanations: Assessing the dynamicist’s challenge in cognitive science. Cognitive Science, 22(3), 295–318.CrossRefGoogle Scholar
  5. Bechtel, W. (2001). Representations: From neural systems to cognitive systems. In W. Bechtel, P. Mandik, J. Mundale, & R. S. Stufflebeam (Eds.), Philosophy and the neurosciences (pp. 332–348). MA: Blackwell Publishers.Google Scholar
  6. Brooks, R. A. (1991). Intelligence without representation. In R. A. Brooks (Ed.), Cambrian intelligence: The early history of the New AI (pp. 79–101). Cambridge, MA: Bradford Books.Google Scholar
  7. Chemero, A. (2011). Radical embodied cognitive science. Cambridge, MA: MIT Press.Google Scholar
  8. Clark, A., & Toribio, J. (1994). Doing without representing? Synthese, 101, 401–431.CrossRefGoogle Scholar
  9. Edelman, S. (2003). But will it scale up? Not without representations. Adaptive Behavior, 11(4), 273–275.CrossRefGoogle Scholar
  10. Finn, J. K., Tregenza, T., & Norman, M. D. (2009). Defensive tool use in a coconut-carrying octopus. Current Biology, 19(23), R1069–R1070.CrossRefGoogle Scholar
  11. Flash, T., & Sejnowski, T. J. (2001). Computational approaches to motor control. Current Opinion in Neurobiology, 11(6), 655–662.CrossRefGoogle Scholar
  12. Fodor, J. A. (1975). The language of thought. New York: Thomas Y. Crowell Company.Google Scholar
  13. Fodor, J. A. (1981). Representations. Cambridge, MA: MIT Press.Google Scholar
  14. Godfrey-Smith, P. (2013). Cephalopods and the evolution of the mind. Pacific Conservation Biology, 19(1), 4–9.CrossRefGoogle Scholar
  15. Godfrey-Smith, P. (2016). Other minds. New York: Farrar, Straus and Giroux.Google Scholar
  16. Graziadei, P. (1971). The nervous system of the arms. The anatomy of the nervous system of octopus vulgaris (pp. 45–61). Oxford: Clarendon Press.Google Scholar
  17. Grush, R. (2001). The architecture of representation. In W. Bechtel, P. Mandik, J. Mundale, & R. S. Stufflebeam (Eds.), Philosophy and the neurosciences (pp. 349–368). MA: Blackwell Publishers.Google Scholar
  18. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377–442.Google Scholar
  19. Gutfreund, Y., Flash, T., Yarom, Y., Fiorito, G., Segev, I., & Hochner, B. (1996). Organization of octopus arm movements: A model system for studying the control of flexible arms. The Journal of Neuroscience, 16(22), 7297–7307.CrossRefGoogle Scholar
  20. Gutfreund, Y., Flash, T., Fiorito, G., & Hochner, B. (1998). Patterns of arm muscle activation involved in octopus reaching movements. The Journal of Neuroscience, 18(15), 5976–5987.CrossRefGoogle Scholar
  21. Gutnick, T., Byrne, R. A., Hochner, B., & Kuba, M. (2011). Octopus vulgaris uses visual information to determine the location of its arm. Current Biology, 21, 460–462.CrossRefGoogle Scholar
  22. Hanlon, R. T., & Messenger, J. B. (1996). Cephalopod behaviour. Great Britain: Cambridge University Press.Google Scholar
  23. Haselager, P., de Groot, A., & van Rappard, H. (2003). Representationalism vs. anti-representationalism: A debate for the sake of appearance. Philosophical Psychology, 16(1), 5–23.CrossRefGoogle Scholar
  24. Haugeland, J. (1991). Representational genera. In J. Haugeland (Ed.), Having thought (pp. 171–206). Cambridge, MA: Harvard University Press.Google Scholar
  25. Hochner, B. (2004). Octopus nervous system. In G. Adelman & B. H. Smith (Eds.), Encyclopedia of neuroscience (3rd ed.). Amseterdam: Elsevier B.V.Google Scholar
  26. Hvorecny, L. M., Grudowski, J. L., Blakeslee, C. J., Simmons, T. L., Roy, P. R., Brooks, J. A., et al. (2007). Octopuses (Octopus bimaculoides) and Cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Animal Cognition, 10, 449–459.CrossRefGoogle Scholar
  27. Kier, W. M., & Smith, K. K. (1985). Tongues, tentacles and trunks: The biomechanics of movement in muscular-hydrostats. Zoological Journal of the Linnean Society, 83(4), 307–324.CrossRefGoogle Scholar
  28. Levy, G., Nesher, N., Zullo, L., & Hochner, B. (2017). Motor control in soft-bodied animals: The octopus. In J. H. Byrne (Ed.), The Oxford handbook of invertebrate neurobiology. Oxford: Oxford Handbooks Online.Google Scholar
  29. Millikan, R. G. (1995). Pushmi–Pullyu representations. Philosophical Perspectives, 9, 185–200.CrossRefGoogle Scholar
  30. Richter, J. N., Hochner, B., & Kuba, M. J. (2015). Octopus arm movements under constrained conditions: Adaptation, modification and plasticity of motor primitives. Journal of Experimental Biology, 218, 1069–1076.CrossRefGoogle Scholar
  31. Rowell, C. H. F. (1963). Excitatory and inhibitory pathways in the arm of octopus. Journal of Experimental Biology, 40, 257–270.Google Scholar
  32. Rowell, C. H. F. (1966). Activity of interneurones in the arm of octopus in response to tactile stimulation. Journal of Experimental Biology, 44, 589–605.Google Scholar
  33. Shapiro, L. (2011). Embodied cognition. New York: Routledge.Google Scholar
  34. Sterelny, K. (1995). Basic minds: AI, connectionism, and philosophical psychology. Philosophical Perspectives, 9, 251–270.CrossRefGoogle Scholar
  35. Sumbre, G., Fiorito, G., Flash, T., & Hochner, B. (2005). Motor control of flexible octopus arms. Nature, 433, 595–596.CrossRefGoogle Scholar
  36. Sumbre, G., Fiorito, G., Flash, T., & Hochner, B. (2006). Octopuses use a human-like strategy to control precise point-to-point arm movements. Current Biology, 16, 767–772.CrossRefGoogle Scholar
  37. Sumbre, G., Yoram Gutfreund, G., Fiorito, T. F., & Hochner, B. (2001). Control of octopus arm extension by a peripheral motor program. Science, 293, 1845–1848.CrossRefGoogle Scholar
  38. Thelen, E., Schöner, G., Scheier, C., & Smith, L. B. (2001). The dynamics of embodiment: A field theory of infant perseverative reaching. Behavioral and Brain Sciences, 24, 1–34.CrossRefGoogle Scholar
  39. Tricarico, E., Borrelli, L., Gherardi, F., & Fiorito, G. (2011). I know my neighbour: Individual recognition in octopus vulgaris. PLoS ONE, 6(4), 1–9.CrossRefGoogle Scholar
  40. van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 91(7), 345–381.CrossRefGoogle Scholar
  41. Wells, M. J. (1978). Octopus: Physiology and behaviour of an advanced invertebrate. London: Chapman and Hall.CrossRefGoogle Scholar
  42. Wolpert, D. M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1(6), 209–216.CrossRefGoogle Scholar
  43. Zullo, L., Sumbre, G., Agnisola, C., Flash, T., & Hochner, B. (2009). Nonsomatotopic organization of the higher motor centers in octopus. Current Biology, 19, 1632–1636.CrossRefGoogle Scholar
  44. Zednik, C. (2011). The nature of dynamical explanation. Philosophy of Science, 78(2), 238–263.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Konrad Lorenz Institute for Evolution and Cognition Research (KLI)KlosterneuburgAustria

Personalised recommendations