pp 1–16 | Cite as

Faithfulness for naive validity

  • Ulf HlobilEmail author


Nontransitive responses to the validity Curry paradox face a dilemma that was recently formulated by Barrio, Rosenblatt and Tajer. It seems that, in the nontransitive logic ST enriched with a validity predicate, either you cannot prove that all derivable metarules preserve validity, or you can prove that instances of Cut that are not admissible in the logic preserve validity. I respond on behalf of the nontransitive approach. The paper argues, first, that we should reject the detachment principle for naive validity. Secondly, I show how to add a validity predicate to ST while avoiding the dilemma.


Naive validity Nontransitive logic V-Curry paradox Substructural approaches to paradox 



I am very grateful for invaluable conversations with and/or comments from Jaroslav Peregrin, Robert Brandom, Daniel Kaplan, Shawn Standefer, Ori Beck, David Ripley, Katharina Nieswandt, Stephen Mackereth, Shuhei Shimamura and two anonymous referees.


  1. Barrio, E., Rosenblatt, L., & Tajer, D. (2016). Capturing naive validity in the cut-free approach. Synthese.
  2. Beall, J., & Murzi, J. (2013). Two flavors of Curry’s paradox. Journal of Philosophy, 110(3), 143–165.CrossRefGoogle Scholar
  3. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2012). Tolerant, classical, strict. Journal of Philosophical Logic, 41(2), 347–385.CrossRefGoogle Scholar
  4. Cobreros, P., Égré, P., Ripley, D., & van Rooij, R. (2013). Reaching transparent truth. Mind, 122(488), 841–866.CrossRefGoogle Scholar
  5. Cook, R. T. (2014). There is no paradox of logical validity. Logica Universalis, 8(3), 447–467.CrossRefGoogle Scholar
  6. Field, H. (2017). Disarming a paradox of validity. Notre Dame Journal of Formal Logic, 58(1), 1–19.CrossRefGoogle Scholar
  7. Heck, R. G. (2007). Self-reference and the languages of arithmetic. Philosophia Mathematica, 15(1), 1–29.CrossRefGoogle Scholar
  8. Hlobil, U. (2018). The cut-free approach and the admissibility-Curry. Thought: A Journal of Philosophy (forthcoming).Google Scholar
  9. Ketland, J. (2012). Validity as a primitive. Analysis, 72(3), 421–430.CrossRefGoogle Scholar
  10. Negri, S., & von Plato, J. (1998). Cut elimination in the presence of axioms. Bulletin of Symbolic Logic, 4(4), 418–435.CrossRefGoogle Scholar
  11. Ripley, D. (2012). Conservatively extending classical logic with transparent truth. Review of Symbolic Logic, 5(2), 354–378.CrossRefGoogle Scholar
  12. Ripley, D. (2013). Paradoxes and failures of cut. Australasian Journal of Philosophy, 91(1), 139–164.CrossRefGoogle Scholar
  13. Ripley, D. (2015). Anything goes. Topoi, 34(1), 25–36.CrossRefGoogle Scholar
  14. Ripley, D. (2017). Bilateralism, coherence, warrant. In F. Moltmann & M. Textor (Eds.), Act-Based Conceptions of Propositional Content (pp. 307–324). Oxford University Press.Google Scholar
  15. Rosenblatt, L. (2017). Naive validity, internalization and substructural approaches to paradox. Ergo, 4(4), 93–120.Google Scholar
  16. Rumfitt, I. (2008). Knowledge by deduction. Grazer Philosophische Studien, 77(1), 61–84.CrossRefGoogle Scholar
  17. Shapiro, L. (2013). Validity Curry strengthened. Thought: A Journal of Philosophy, 2(2), 100–107.Google Scholar
  18. von Kutschera, F. (1968). Die Vollständigkeit des Operatorensystems \(\{\lnot,\vee,\supset \}\) für die intuitionistische Aussagenlogik im Rahmen der Gentzensematik. Archive for Mathematical Logic, 11(1), 3–16.CrossRefGoogle Scholar
  19. Wansing, H., & Priest, G. (2015). External Curries. Journal of Philosophical Logic, 44(4), 453–471.CrossRefGoogle Scholar
  20. Zardini, E. (2013). Naive modus ponens. Journal of Philosophical Logic, 42(4), 575–593.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhilosophyConcordia UniversityMontrealCanada
  2. 2.Affiliated faculty at: University of Hradec KrálovéHradec KraloveCzechia

Personalised recommendations