Advertisement

Synthese

, Volume 196, Issue 5, pp 1963–1990 | Cite as

Infinitesimal idealization, easy road nominalism, and fractional quantum statistics

  • Elay ShechEmail author
S.I.: Infinite Idealizations in Science

Abstract

It has been recently debated whether there exists a so-called “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to easy road nominalism, thereby partially defending Mark Colyvan’s claim that there is no easy road to nominalism.

Keywords

Idealization Approximation Easy road nominalism Mathematical explanation Indispensability argument Anyons Fractional quantum statistics 

Notes

Acknowledgements

I gratefully acknowledge useful discussions with Mary Leng and Mark Colyvan. Previous versions of this paper were presented at the “Annual Meeting of the European Philosophy of Science Association” at Exeter University on 09/09/2017 and “Current Projects” at Department of Philosophy at University of Sydney on 08/03/2017. I thank the participants for helpful comments. This work was produced as part of a visiting fellowship at the Sydney Centre for the Foundations of Science and Ideas and the Sydney Centre for Time at University of Sydney.

References

  1. Afanasiev, G. N. (1999). Topological effects in quantum mechanics. Norwell, MA: Kluwer.CrossRefGoogle Scholar
  2. Aharonov, Y., & Bohm, D. (1959). Significance of electromagnetic potentials in the quantum theory. Physical Review, 115, 485–91.CrossRefGoogle Scholar
  3. Ando, T., Fowler, A. B., & Stern, F. (1982). Electronic properties of two-dimensional systems. Reviews of Modern Physics, 54, 437–672.CrossRefGoogle Scholar
  4. Arovas, D. P., Schrieffer, J. R., & Wilczek, F. (1984). Fractional statistics and the quantum Hall effect. Physical Review Letters, 53, 722–723.CrossRefGoogle Scholar
  5. Artin, E. (1947). Theory of braids. Annals of Mathematics, 48(1), 101–126.CrossRefGoogle Scholar
  6. Azzouni, J. (2004). Deflating existential consequence: A case for nominalism. New York: Oxford University Press.CrossRefGoogle Scholar
  7. Azzouni, J. (2012). Taking the easy road out of Dodge. Mind, 121, 951–66.CrossRefGoogle Scholar
  8. Bain, J. (2013). Emergence in effective field theories. European Journal for Philosophy of Science, 3, 257–273.CrossRefGoogle Scholar
  9. Bain, J. (2016). Emergence and mechanism in the fractional quantum Hall effect. Studies in History and Philosophy of Modern Physics, 56, 27–38.Google Scholar
  10. Baron, S. (2016). The explanatory dispensability of idealizations. Synthese, 193, 365–386.CrossRefGoogle Scholar
  11. Baker, A. (2005). Are there genuine mathematical explanations of physical phenomena? Mind, 114, 223–38.CrossRefGoogle Scholar
  12. Baker, A. (2009). Mathematical explanation in science. British Journal for the Philosophy of Science, 60, 611–33.CrossRefGoogle Scholar
  13. Baker, A. (2012). Science-driven mathematical explanation. Mind, 121, 243–67.CrossRefGoogle Scholar
  14. Balaguer, M. (1998). Platonism and anti-platonism in mathematics. New York: Oxford University Press.Google Scholar
  15. Batterman, R. (2002). The devil in the details: Asymptotic reasoning in explanation, reduction, and emergence. London: Oxford University Press.Google Scholar
  16. Batterman, R. (2003). Falling cats, parallel parking, and polarized light. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 34, 527–557.CrossRefGoogle Scholar
  17. Batterman, R. (2005). Critical phenomena and breaking drops: Infinite idealizations in physics. Studies In History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 36B, 225–44.CrossRefGoogle Scholar
  18. Batterman, R., & Rice, C. (2014). Minimal model explanations. Philosophy of Science, 81(3), 349–376.CrossRefGoogle Scholar
  19. Bokulich, A. (2008). Re-examining the quantum-classical relation: Beyond reductionism and pluralism. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Bueno, O. (2012). An easy road to nominalism. Mind, 121, 967–82.CrossRefGoogle Scholar
  21. Butterfield, J. (2011). Less is different: Emergence and reduction reconciled. Foundations of Physics, 41, 1065–1135.CrossRefGoogle Scholar
  22. Camino, F. E., Zhou, W., & Goldman, V. J. (2005). Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics. Physical Review B, 72, 075342.CrossRefGoogle Scholar
  23. Chakraborty, T., & Pietilinen, P. (1995). The quantum Hall effects. Berlin: Springer.CrossRefGoogle Scholar
  24. Colyvan, M. (2001). The indispensability of mathematics. New York: Oxford University Press.CrossRefGoogle Scholar
  25. Colyvan, M. (2007). Mathematical recreation versus mathematical knowledge. In M. Leng, A. Paseau, & M. D. Potter (Eds.) (pp. 109–22).Google Scholar
  26. Colyvan, M. (2010). There is no easy road to nominalism. Mind, 119, 285–306.CrossRefGoogle Scholar
  27. Colyvan, M. (2012a). Road work ahead: Heavy machinery on the easy road. Mind, 121, 1031–1046.CrossRefGoogle Scholar
  28. Colyvan, M. (2012b). An introduction to the philosophy of mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. De Bianchi, S. (2016). Which explanatory role for mathematics in scientific models? reply to ‘the explanatory dispensability of idealizations’. Synthese, 193, 387–401.CrossRefGoogle Scholar
  30. Earman, J. (2010). Understanding permutation invariance in quantum mechanics. (Unpublished manuscript).Google Scholar
  31. Earman, J. (2017). The role of idealizations in the Aharonov-Bohm effect. Synthese,.  https://doi.org/10.1007/s11229-017-1522-9.
  32. Ezawa, Z. F. (2013). Quantum Hall effects. Singapore: World Scientific.CrossRefGoogle Scholar
  33. Fadell, E., & Neuwirth, L. (1962). Configuration spaces. Mathematica Scandinavica, 10, 111–118.CrossRefGoogle Scholar
  34. Field, H. H. (1980). Science without numbers: A defense of nominalism. Oxford: Blackwell.Google Scholar
  35. Fox, R., & Neuwirth, L. (1962). The braid groups. Mathematica Scandinavica, 10, 119–126.CrossRefGoogle Scholar
  36. Fradkin, E. (2013). Field theories of condensed matter physics (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Frigg, R. (2006). Scientific representation and the semantic view of theories. Theoria, 55(2006), 49–65.Google Scholar
  38. Guay, A., & Sartenaer, O. (2016a). A new look at emergence. Or when after is different. European Journal for Philosophy of Science, 6, 297–322.CrossRefGoogle Scholar
  39. Guay, A., Sartenaer, O. (2016b). Emergent quasiparticles. Or how to get a rich physics from a sober metaphysics. In O. Bueno, R. Chen, & M. B. Fagan (Eds.), Individuation across experimental and theoretical sciences. Oxford: Oxford University Press. http://hdl.handle.net/2078.1/179059
  40. Hatcher, A. (2002). Algebraic topology. Cambridge: Cambridge University Press.Google Scholar
  41. Healey, R. A. (2007). Gaugin what’s real: The conceptual foundations of contemporary gauge theories. New York: Oxford University Press.CrossRefGoogle Scholar
  42. Hempel, C., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15, 135–75. Repr. in Hempel, C. (Ed.), Aspects of scientific explanation and other essays in the philosophy of science. New York: Free Press (1965) (pp. 245–90).Google Scholar
  43. Hughes, R. I. G. (1989). Bell’s theorem, ideology, and structural explanation. In J. T. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory: Reections on Bell’s theorem (pp. 195–207). Notre Dame, IN: University of Notre Dame Press.Google Scholar
  44. Kadanoff, L. P. (2000). Statistical physics: Statics, dynamics and renormalization. Singapore: World Scientific.CrossRefGoogle Scholar
  45. Katanaev, M. O. (2011). On geometric interpretation of the Aharonov-Bohm effect. Russian Physics Journal, 54(5), 507–514.CrossRefGoogle Scholar
  46. Khare, A. (2005). Fractional statistics and quantum theory. Hackensack, NJ: World Scientific.Google Scholar
  47. Klitzing, K. v., Dorda, G., & Pepper, M., (1980). New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical Review Letters, 45, 494–497.Google Scholar
  48. Laidlaw, M. G., & DeWitt, C. M. (1971). Feynman functional integrals for system of indistinguishable particles. Physical Review D, 3, 1375–1378.CrossRefGoogle Scholar
  49. Lancaster, T., & Pexton, M. (2015). Reduction and emergence in the fractional quantum Hall state. Studies in History and Philosophy of Modern Physics, 52, 343–357.CrossRefGoogle Scholar
  50. Landsman, N. P. (2016). Quantization and superselection sectors III: Multiply connected spaces and indistinguishable particles. Reviews in Mathematical Physics, 28, 1650019.CrossRefGoogle Scholar
  51. Laughlin, R. (1983). Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Physical Review Letters, 50, 1395–8.CrossRefGoogle Scholar
  52. Lederer, P. (2015). The quantum Hall effects: Philosophical approach. Studies in History and Philosophy of Modern Physics, 50, 25–42.CrossRefGoogle Scholar
  53. Leinaas, J. M., & Myrheim, J. (1977). On the theory of identical particles. Nuovo Cimento B, 37, 1–23.CrossRefGoogle Scholar
  54. Leng, M. (2005). Mathematical explanation. In C. Cellucci & D. Gillies (Eds.), Mathematical reasoning and heuristics. London: King’s College Publications.Google Scholar
  55. Leng, M. (2010). Mathematics and reality. Oxford: Oxford University Press.CrossRefGoogle Scholar
  56. Leng, M. (2012). Taking it easy: A response to Colyvan. Mind, 121, 983–96.CrossRefGoogle Scholar
  57. Liggins, D. (2012). Weaseling and the content of science. Mind, 121, 997–1006.CrossRefGoogle Scholar
  58. Maddy, P. (1997). Naturalism in mathematics. Oxford: Clarendon Press.Google Scholar
  59. Masenes, L., & Oppenheim, J. (2017). A general derivation and quantification of the third law of thermodynamics. Nature Communications, 8, 14538.CrossRefGoogle Scholar
  60. Mattingly, J. (2006). Which gauge matters. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 37, 243–262.CrossRefGoogle Scholar
  61. Maudlin, T. (1998). Discussion: Healey on the Aharonov-Bohm effect. Philosophy of Science, 65, 361–368.CrossRefGoogle Scholar
  62. McMullin, E. (1985). Galilean idealization. Studies in the History and Philosophy of Science, 16, 247–273.CrossRefGoogle Scholar
  63. Melia, J. (2000). Weaseling away the indispensability argument. Mind, 109, 455–7.CrossRefGoogle Scholar
  64. Melia, J. (2002). Reply to Colyvan. Mind, 111, 75–9.CrossRefGoogle Scholar
  65. Menon, T., & Callender, C. (2013). Turn and face the strange... Ch-Ch-changes: Philosophical questions raised by phase transitions. In R. W. Batterman (Ed.), The Oxford handbook of philosophy of physics. Oxford: Oxford University Press.Google Scholar
  66. Messiah, A. M. (1962). Quantum mechanics. New York: Wiley.Google Scholar
  67. Messiah, A. M., & Greenberg, O. W. (1964). Symmetrization postulate and its experimental foundation. Physical Review B, 136, 248–267.CrossRefGoogle Scholar
  68. Molinini, D., Pataut, F., & Sereni, A. (2016). Indispensability and explanation: An overview and introduction. Synthese, 193, 317–332.CrossRefGoogle Scholar
  69. Morandi, G. (1992). The role of topology in classical and quantum mechanics. Berlin: Springer.CrossRefGoogle Scholar
  70. Norton, J. D. (2012). Approximations and idealizations: Why the difference matters. Philosophy of Science, 79, 207–32.CrossRefGoogle Scholar
  71. Nounou, A. (2003). A fourth way to the Aharonov-Bohm effect. In K. Bradind & E. Castellani (Eds.), Symmetries in physics: Philosophical replections. Cambridge: Cambridge University Press.Google Scholar
  72. Pachos, J. K. (2012). Introduction to topological quantum computation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  73. Peshkin, M., & Tonomura, A. (1989). The Aharonov–Bohm effect. LNP (Vol. 340). Berlin: Springer.Google Scholar
  74. Putnam, H. (1971). Philosophy of logic. New York: Harper.Google Scholar
  75. Quine, W. V. O. (1981). Theories and things. Cambridge, MA: Harvard University Press.Google Scholar
  76. Railton, P. (1980). Explaining explanation: A realist account of scientific explanation and understanding. Ph.D. Dissertation, Princeton University.Google Scholar
  77. Rao, S. (2001). An anyon rimer. arXiv:hep-th/9209066.
  78. Ruelle, D. (2004). Thermodynamic formalism (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  79. Ruetsche, L. (2011). Interpreting quantum theories: The art of the possible. Oxford: Oxford University Press.CrossRefGoogle Scholar
  80. Ryder, L. H. (1996). Quantum field theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  81. Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton, NJ: Princeton University Press.Google Scholar
  82. Shech, E. (2013). What is the ‘paradox of phase transitions?’. Philosophy of Science, 80, 1170–1181.CrossRefGoogle Scholar
  83. Shech, E. (2015). Two approaches to fractional statistics in the quantum Hall effect: Idealizations and the curious case of the anyon. Foundations of Physics, 45(9), 1063–110.CrossRefGoogle Scholar
  84. Shech, E. (2017). Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov–Bohm effect. Synthese, 1–25.  https://doi.org/10.1007/s11229-017-1428-6.
  85. Stern, A. (2008). Anyons and the quantum Hall effect–a pedagogical review. Annals of Physics, 323, 204–249.CrossRefGoogle Scholar
  86. Tonomura, A. (2010). The AB effect and its expanding applications. Journal of Physics A: Mathematical and Theoretical, 43, 1–13.CrossRefGoogle Scholar
  87. Tsui, D. C., Stormer, H. L., & Gossard, A. C. (1982). Two-dimensional magnetotransport in the extreme quantum limit. Physical Review Letters, 48(22), 1559.Google Scholar
  88. von Klitzing, K. (2004). 25 Years of quantum Hall effect (QHE): A personal view on the discovery, physica and application of this quantum effect. In B. Douçot, V. Pasquier, B. Duplantier, & V. Rivasseau (Eds.), The quantum Hall effect Poincaré seminar (pp. 1–23). Berlin: Birkhäuser.Google Scholar
  89. Weisberg, M. (2013). Simulation and similarity: Using models to understand the world. New York: Oxford University Press.CrossRefGoogle Scholar
  90. Wilczek, F. (1982a). Magnetic flux, angular momentum and statistics. Physical Review Letters, 48, 1144–1146.CrossRefGoogle Scholar
  91. Wilczek, F. (1982b). Quantum mechanics of fractional-spin particles. Physical Review Letters, 49, 957–959.CrossRefGoogle Scholar
  92. Wilczek, F. (Ed.). (1990). Fractional statistics and anyon superconductivity. Singapore: World Scientific.Google Scholar
  93. Woodward, J. F. (2003). Making things happen: A theory of causation. Oxford: Oxford University Press.Google Scholar
  94. Wu, T. T., & Yang, C. N. (1975). Concept of nonintegrable phase factors and global formulation of gauge fields. Physical Review D, 12, 3845.CrossRefGoogle Scholar
  95. Yablo, S. (1998). Does ontology rest on a mistake? Aristotelian Society, Supplementary, 72, 229–61.CrossRefGoogle Scholar
  96. Yablo, S. (2002). Abstract objects: A case study. Philosophical Issues, 12, 220–40.CrossRefGoogle Scholar
  97. Yablo, S. (2012). Explanation, extrapolation, and existence. Mind, 121, 1007–30.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Office 6004, Department of Philosophy, 6080 Haley CenterAuburn UniversityAuburnUSA

Personalised recommendations