# Infinitesimal idealization, easy road nominalism, and fractional quantum statistics

- 114 Downloads
- 1 Citations

## Abstract

It has been recently debated whether there exists a so-called “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to easy road nominalism, thereby partially defending Mark Colyvan’s claim that there is no easy road to nominalism.

## Keywords

Idealization Approximation Easy road nominalism Mathematical explanation Indispensability argument Anyons Fractional quantum statistics## Notes

### Acknowledgements

I gratefully acknowledge useful discussions with Mary Leng and Mark Colyvan. Previous versions of this paper were presented at the “Annual Meeting of the European Philosophy of Science Association” at Exeter University on 09/09/2017 and “Current Projects” at Department of Philosophy at University of Sydney on 08/03/2017. I thank the participants for helpful comments. This work was produced as part of a visiting fellowship at the Sydney Centre for the Foundations of Science and Ideas and the Sydney Centre for Time at University of Sydney.

## References

- Afanasiev, G. N. (1999).
*Topological effects in quantum mechanics*. Norwell, MA: Kluwer.CrossRefGoogle Scholar - Aharonov, Y., & Bohm, D. (1959). Significance of electromagnetic potentials in the quantum theory.
*Physical Review*,*115*, 485–91.CrossRefGoogle Scholar - Ando, T., Fowler, A. B., & Stern, F. (1982). Electronic properties of two-dimensional systems.
*Reviews of Modern Physics*,*54*, 437–672.CrossRefGoogle Scholar - Arovas, D. P., Schrieffer, J. R., & Wilczek, F. (1984). Fractional statistics and the quantum Hall effect.
*Physical Review Letters*,*53*, 722–723.CrossRefGoogle Scholar - Azzouni, J. (2004).
*Deflating existential consequence: A case for nominalism*. New York: Oxford University Press.CrossRefGoogle Scholar - Bain, J. (2013). Emergence in effective field theories.
*European Journal for Philosophy of Science*,*3*, 257–273.CrossRefGoogle Scholar - Bain, J. (2016). Emergence and mechanism in the fractional quantum Hall effect.
*Studies in History and Philosophy of Modern Physics*,*56*, 27–38.Google Scholar - Baron, S. (2016). The explanatory dispensability of idealizations.
*Synthese*,*193*, 365–386.CrossRefGoogle Scholar - Baker, A. (2005). Are there genuine mathematical explanations of physical phenomena?
*Mind*,*114*, 223–38.CrossRefGoogle Scholar - Baker, A. (2009). Mathematical explanation in science.
*British Journal for the Philosophy of Science*,*60*, 611–33.CrossRefGoogle Scholar - Balaguer, M. (1998).
*Platonism and anti-platonism in mathematics*. New York: Oxford University Press.Google Scholar - Batterman, R. (2002).
*The devil in the details: Asymptotic reasoning in explanation, reduction, and emergence*. London: Oxford University Press.Google Scholar - Batterman, R. (2003). Falling cats, parallel parking, and polarized light.
*Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics*,*34*, 527–557.CrossRefGoogle Scholar - Batterman, R. (2005). Critical phenomena and breaking drops: Infinite idealizations in physics.
*Studies In History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics*,*36B*, 225–44.CrossRefGoogle Scholar - Batterman, R., & Rice, C. (2014). Minimal model explanations.
*Philosophy of Science*,*81*(3), 349–376.CrossRefGoogle Scholar - Bokulich, A. (2008).
*Re-examining the quantum-classical relation: Beyond reductionism and pluralism*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Butterfield, J. (2011). Less is different: Emergence and reduction reconciled.
*Foundations of Physics*,*41*, 1065–1135.CrossRefGoogle Scholar - Camino, F. E., Zhou, W., & Goldman, V. J. (2005). Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics.
*Physical Review B*,*72*, 075342.CrossRefGoogle Scholar - Chakraborty, T., & Pietilinen, P. (1995).
*The quantum Hall effects*. Berlin: Springer.CrossRefGoogle Scholar - Colyvan, M. (2001).
*The indispensability of mathematics*. New York: Oxford University Press.CrossRefGoogle Scholar - Colyvan, M. (2007). Mathematical recreation versus mathematical knowledge. In M. Leng, A. Paseau, & M. D. Potter (Eds.) (pp. 109–22).Google Scholar
- Colyvan, M. (2012a). Road work ahead: Heavy machinery on the easy road.
*Mind*,*121*, 1031–1046.CrossRefGoogle Scholar - Colyvan, M. (2012b).
*An introduction to the philosophy of mathematics*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - De Bianchi, S. (2016). Which explanatory role for mathematics in scientific models? reply to ‘the explanatory dispensability of idealizations’.
*Synthese*,*193*, 387–401.CrossRefGoogle Scholar - Earman, J. (2010). Understanding permutation invariance in quantum mechanics. (Unpublished manuscript).Google Scholar
- Earman, J. (2017). The role of idealizations in the Aharonov-Bohm effect.
*Synthese*,. https://doi.org/10.1007/s11229-017-1522-9. - Ezawa, Z. F. (2013).
*Quantum Hall effects*. Singapore: World Scientific.CrossRefGoogle Scholar - Fadell, E., & Neuwirth, L. (1962). Configuration spaces.
*Mathematica Scandinavica*,*10*, 111–118.CrossRefGoogle Scholar - Field, H. H. (1980).
*Science without numbers: A defense of nominalism*. Oxford: Blackwell.Google Scholar - Fox, R., & Neuwirth, L. (1962). The braid groups.
*Mathematica Scandinavica*,*10*, 119–126.CrossRefGoogle Scholar - Fradkin, E. (2013).
*Field theories of condensed matter physics*(2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Frigg, R. (2006). Scientific representation and the semantic view of theories.
*Theoria*,*55*(2006), 49–65.Google Scholar - Guay, A., & Sartenaer, O. (2016a). A new look at emergence. Or when after is different.
*European Journal for Philosophy of Science*,*6*, 297–322.CrossRefGoogle Scholar - Guay, A., Sartenaer, O. (2016b). Emergent quasiparticles. Or how to get a rich physics from a sober metaphysics. In O. Bueno, R. Chen, & M. B. Fagan (Eds.),
*Individuation across experimental and theoretical sciences*. Oxford: Oxford University Press. http://hdl.handle.net/2078.1/179059 - Hatcher, A. (2002).
*Algebraic topology*. Cambridge: Cambridge University Press.Google Scholar - Healey, R. A. (2007).
*Gaugin what’s real: The conceptual foundations of contemporary gauge theories*. New York: Oxford University Press.CrossRefGoogle Scholar - Hempel, C., & Oppenheim, P. (1948). Studies in the logic of explanation.
*Philosophy of Science, 15*, 135–75. Repr. in Hempel, C. (Ed.),*Aspects of scientific explanation and other essays in the philosophy of science*. New York: Free Press (1965) (pp. 245–90).Google Scholar - Hughes, R. I. G. (1989). Bell’s theorem, ideology, and structural explanation. In J. T. Cushing & E. McMullin (Eds.),
*Philosophical consequences of quantum theory: Reections on Bell’s theorem*(pp. 195–207). Notre Dame, IN: University of Notre Dame Press.Google Scholar - Kadanoff, L. P. (2000).
*Statistical physics: Statics, dynamics and renormalization*. Singapore: World Scientific.CrossRefGoogle Scholar - Katanaev, M. O. (2011). On geometric interpretation of the Aharonov-Bohm effect.
*Russian Physics Journal*,*54*(5), 507–514.CrossRefGoogle Scholar - Khare, A. (2005).
*Fractional statistics and quantum theory*. Hackensack, NJ: World Scientific.Google Scholar - Klitzing, K. v., Dorda, G., & Pepper, M., (1980). New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance.
*Physical Review Letters*,*45*, 494–497.Google Scholar - Laidlaw, M. G., & DeWitt, C. M. (1971). Feynman functional integrals for system of indistinguishable particles.
*Physical Review D*,*3*, 1375–1378.CrossRefGoogle Scholar - Lancaster, T., & Pexton, M. (2015). Reduction and emergence in the fractional quantum Hall state.
*Studies in History and Philosophy of Modern Physics*,*52*, 343–357.CrossRefGoogle Scholar - Landsman, N. P. (2016). Quantization and superselection sectors III: Multiply connected spaces and indistinguishable particles.
*Reviews in Mathematical Physics*,*28*, 1650019.CrossRefGoogle Scholar - Laughlin, R. (1983). Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations.
*Physical Review Letters*,*50*, 1395–8.CrossRefGoogle Scholar - Lederer, P. (2015). The quantum Hall effects: Philosophical approach.
*Studies in History and Philosophy of Modern Physics*,*50*, 25–42.CrossRefGoogle Scholar - Leinaas, J. M., & Myrheim, J. (1977). On the theory of identical particles.
*Nuovo Cimento B*,*37*, 1–23.CrossRefGoogle Scholar - Leng, M. (2005). Mathematical explanation. In C. Cellucci & D. Gillies (Eds.),
*Mathematical reasoning and heuristics*. London: King’s College Publications.Google Scholar - Leng, M. (2010).
*Mathematics and reality*. Oxford: Oxford University Press.CrossRefGoogle Scholar - Liggins, D. (2012). Weaseling and the content of science.
*Mind*,*121*, 997–1006.CrossRefGoogle Scholar - Maddy, P. (1997).
*Naturalism in mathematics*. Oxford: Clarendon Press.Google Scholar - Masenes, L., & Oppenheim, J. (2017). A general derivation and quantification of the third law of thermodynamics.
*Nature Communications*,*8*, 14538.CrossRefGoogle Scholar - Mattingly, J. (2006). Which gauge matters.
*Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics*,*37*, 243–262.CrossRefGoogle Scholar - Maudlin, T. (1998). Discussion: Healey on the Aharonov-Bohm effect.
*Philosophy of Science*,*65*, 361–368.CrossRefGoogle Scholar - McMullin, E. (1985). Galilean idealization.
*Studies in the History and Philosophy of Science*,*16*, 247–273.CrossRefGoogle Scholar - Melia, J. (2000). Weaseling away the indispensability argument.
*Mind*,*109*, 455–7.CrossRefGoogle Scholar - Menon, T., & Callender, C. (2013). Turn and face the strange... Ch-Ch-changes: Philosophical questions raised by phase transitions. In R. W. Batterman (Ed.),
*The Oxford handbook of philosophy of physics*. Oxford: Oxford University Press.Google Scholar - Messiah, A. M. (1962).
*Quantum mechanics*. New York: Wiley.Google Scholar - Messiah, A. M., & Greenberg, O. W. (1964). Symmetrization postulate and its experimental foundation.
*Physical Review B*,*136*, 248–267.CrossRefGoogle Scholar - Molinini, D., Pataut, F., & Sereni, A. (2016). Indispensability and explanation: An overview and introduction.
*Synthese*,*193*, 317–332.CrossRefGoogle Scholar - Morandi, G. (1992).
*The role of topology in classical and quantum mechanics*. Berlin: Springer.CrossRefGoogle Scholar - Norton, J. D. (2012). Approximations and idealizations: Why the difference matters.
*Philosophy of Science*,*79*, 207–32.CrossRefGoogle Scholar - Nounou, A. (2003). A fourth way to the Aharonov-Bohm effect. In K. Bradind & E. Castellani (Eds.),
*Symmetries in physics: Philosophical replections*. Cambridge: Cambridge University Press.Google Scholar - Pachos, J. K. (2012).
*Introduction to topological quantum computation*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Peshkin, M., & Tonomura, A. (1989).
*The Aharonov–Bohm effect*. LNP (Vol. 340). Berlin: Springer.Google Scholar - Putnam, H. (1971).
*Philosophy of logic*. New York: Harper.Google Scholar - Quine, W. V. O. (1981).
*Theories and things*. Cambridge, MA: Harvard University Press.Google Scholar - Railton, P. (1980).
*Explaining explanation: A realist account of scientific explanation and understanding*. Ph.D. Dissertation, Princeton University.Google Scholar - Rao, S. (2001). An anyon rimer. arXiv:hep-th/9209066.
- Ruelle, D. (2004).
*Thermodynamic formalism*(2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Ruetsche, L. (2011).
*Interpreting quantum theories: The art of the possible*. Oxford: Oxford University Press.CrossRefGoogle Scholar - Ryder, L. H. (1996).
*Quantum field theory*. Cambridge: Cambridge University Press.CrossRefGoogle Scholar - Salmon, W. (1984).
*Scientific explanation and the causal structure of the world*. Princeton, NJ: Princeton University Press.Google Scholar - Shech, E. (2013). What is the ‘paradox of phase transitions?’.
*Philosophy of Science*,*80*, 1170–1181.CrossRefGoogle Scholar - Shech, E. (2015). Two approaches to fractional statistics in the quantum Hall effect: Idealizations and the curious case of the anyon.
*Foundations of Physics*,*45*(9), 1063–110.CrossRefGoogle Scholar - Shech, E. (2017). Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov–Bohm effect.
*Synthese*, 1–25. https://doi.org/10.1007/s11229-017-1428-6. - Stern, A. (2008). Anyons and the quantum Hall effect–a pedagogical review.
*Annals of Physics*,*323*, 204–249.CrossRefGoogle Scholar - Tonomura, A. (2010). The AB effect and its expanding applications.
*Journal of Physics A: Mathematical and Theoretical*,*43*, 1–13.CrossRefGoogle Scholar - Tsui, D. C., Stormer, H. L., & Gossard, A. C. (1982). Two-dimensional magnetotransport in the extreme quantum limit.
*Physical Review Letters, 48*(22), 1559.Google Scholar - von Klitzing, K. (2004). 25 Years of quantum Hall effect (QHE): A personal view on the discovery, physica and application of this quantum effect. In B. Douçot, V. Pasquier, B. Duplantier, & V. Rivasseau (Eds.),
*The quantum Hall effect Poincaré seminar*(pp. 1–23). Berlin: Birkhäuser.Google Scholar - Weisberg, M. (2013).
*Simulation and similarity: Using models to understand the world*. New York: Oxford University Press.CrossRefGoogle Scholar - Wilczek, F. (1982a). Magnetic flux, angular momentum and statistics.
*Physical Review Letters*,*48*, 1144–1146.CrossRefGoogle Scholar - Wilczek, F. (1982b). Quantum mechanics of fractional-spin particles.
*Physical Review Letters*,*49*, 957–959.CrossRefGoogle Scholar - Wilczek, F. (Ed.). (1990).
*Fractional statistics and anyon superconductivity*. Singapore: World Scientific.Google Scholar - Woodward, J. F. (2003).
*Making things happen: A theory of causation*. Oxford: Oxford University Press.Google Scholar - Wu, T. T., & Yang, C. N. (1975). Concept of nonintegrable phase factors and global formulation of gauge fields.
*Physical Review D*,*12*, 3845.CrossRefGoogle Scholar - Yablo, S. (1998). Does ontology rest on a mistake?
*Aristotelian Society, Supplementary*,*72*, 229–61.CrossRefGoogle Scholar - Yablo, S. (2002). Abstract objects: A case study.
*Philosophical Issues*,*12*, 220–40.CrossRefGoogle Scholar - Yablo, S. (2012). Explanation, extrapolation, and existence.
*Mind*,*121*, 1007–30.CrossRefGoogle Scholar