Advertisement

Synthese

pp 1–21 | Cite as

Intensional biases in affordance perception: an explanatory issue for radical enactivism

  • Silvano Zipoli CaianiEmail author
S.I.: Between Vision and Action

Abstract

Radical Enactivism holds that the best explanation of basic forms of cognition is provided without involving information of any sort. According to this view, the ability to perceive visual affordances should be accounted for in terms of extensional covariations between variables spanning the agent’s body and the environment. Contrary to Radical Enactivism, I argue that the intensional properties of cognition cannot be ignored, and that the way in which an agent represents the world has consequences on the explanation of basic sensorimotor abilities. To support this claim, I show that the perception of visual affordances is not segregated from higher forms of cognition; rather, it is modulated by the agent’s ability to recognize the semantic identity of the visual target. Accordingly, since the semantic recognition of an object involves a way of representing it under a certain description, it can be inferred that the perception of visual affordances cannot be accounted for without considering the intensional properties of cognition. This poses an explanatory issue for Radical Enactivism.

Keywords

Visual affordance Intensionality Basic cognition Radical enactivism 

Notes

Acknowledgements

I would like to thank the audience of the biannual conference of the Italian Society for Analytic Philosophy held in September 2018, and Gabriele Ferretti for comments and suggestions. I’m also grateful to the two anonymous reviewers for allowing me to improve the paper.

References

  1. Ambrosini, E., Scorolli, C., Borghi, A. M., & Costantini, M. (2012). Which body for embodied cognition? Affordance and language within actual and perceived reaching space. Consciousness and Cognition, 21(3), 1551–1557.CrossRefGoogle Scholar
  2. Anderson, M. L. (2014). After phrenology: Neural reuse and the interactive brain. Cambridge: Bradford Books.Google Scholar
  3. Balduzzi, D., & Tononi, G. (2008). Integrated information in discrete dynamical systems: Motivation and theoretical framework. PLoS Computational Biology, 4(6), e1000091.  https://doi.org/10.1371/journal.pcbi.1000091.CrossRefGoogle Scholar
  4. Beer, R. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3), 91–99.CrossRefGoogle Scholar
  5. Bellebaum, C., Tettamanti, M., Marchetta, E., Della Rosa, P., Rizzo, G., Daum, I., et al. (2013). Neural representations of unfamiliar objects are modulated by sensorimotor experience. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 49(4), 1110–1125.  https://doi.org/10.1016/j.cortex.2012.03.023.CrossRefGoogle Scholar
  6. Borghi, A. M. (forthcoming). Affordances, context and sociality. Synthese.Google Scholar
  7. Borghi, A. M., & Riggio, L. (2015). Stable and variable affordances are both automatic and flexible. Frontiers in Human Neuroscience.  https://doi.org/10.3389/fnhum.2015.00351.CrossRefGoogle Scholar
  8. Borra, E., Ichinohe, N., Sato, T., Tanifuji, M., & Rockland, K. S. (2010). Cortical connections to area TE in monkey: Hybrid modular and distributed organization. Cerebral Cortex (New York, N.Y.: 1991), 20(2), 257–270.  https://doi.org/10.1093/cercor/bhp096.CrossRefGoogle Scholar
  9. Briscoe, R. (2009). Egocentric spatial representation in action and perception. Philosophy and Phenomenological Research, 79(2), 423–460.CrossRefGoogle Scholar
  10. Briscoe, R., & Schwenkler, J. (2015). Conscious vision in action. Cognitive Science, 39(7), 1435–1467.CrossRefGoogle Scholar
  11. Brogaard, B. (2011). Conscious vision for action versus unconscious vision for action? Cognitive Science, 35, 1076–1104.CrossRefGoogle Scholar
  12. Bruineberg, J., & Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances. Frontiers in Human Neuroscience, 8, 599.  https://doi.org/10.3389/fnhum.2014.00599.CrossRefGoogle Scholar
  13. Burnston, D. (2016). Cognitive penetration and the cognition–perception interface. Synthese.  https://doi.org/10.1007/s11229-016-1116-y.CrossRefGoogle Scholar
  14. Caligiore, D., Borghi, A. M., Parisi, D., Ellis, R., Cangelosi, A., & Baldassarre, G. (2013). How affordances associated with a distractor object affect compatibility effects: A study with the computational model TRoPICALS. Psychological Research, 77(1), 7–19.  https://doi.org/10.1007/s00426-012-0424-1.CrossRefGoogle Scholar
  15. Carello, C., Grosofsky, A., Reichel, F. D., Solomon, H. Y., & Turvey, M. T. (1989). Visually perceiving what is reachable. Ecological Psychology, 1, 27–54.  https://doi.org/10.1207/s15326969eco0101_3.CrossRefGoogle Scholar
  16. Carey, D. P., Harvey, M., & Milner, A. D. (1996). Visuomotor sensitivity for shape and orientation in a patient with visual form agnosia. Neuropsychologia, 34(5), 329–337.CrossRefGoogle Scholar
  17. Carnap, R. (1955). Meaning and synonymy in natural languages. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 6(3), 33–47.CrossRefGoogle Scholar
  18. Carnap, R. (1960). The methodological character of theoretical concepts. Journal of Symbolic Logic, 25(1), 71–74.CrossRefGoogle Scholar
  19. Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. NeuroImage, 12(4), 478–484.  https://doi.org/10.1006/nimg.2000.0635.CrossRefGoogle Scholar
  20. Chemero, A. (2011). Radical embodied cognitive science., Bradford Cambridge: MIT Press.Google Scholar
  21. Chemero, T., & Silberstein, M. (2008). After the philosophy of mind: Replacing scholasticism with science. Philosophy of Science, 75(1), 1–27.CrossRefGoogle Scholar
  22. Chinellato, E., & del Pobil, A. P. (2016). The neuroscience of action and perception. In E. Chinellato, A. P. del Pobil (Eds.), The visual neuroscience of robotic grasping (pp. 7–38). Cham: Springer.  https://doi.org/10.1007/978-3-319-20303-4_2.CrossRefGoogle Scholar
  23. Chow, J. Y., Davids, K., Button, C., & Renshaw, I. (2015). Nonlinear pedagogy in skill acquisition: An introduction (1st ed.). London: Routledge.CrossRefGoogle Scholar
  24. Cisek, P. (2007). Cortical mechanisms of action selection: the affordances competition hypothesis. Philosophical Transaction of the Royal Society B, 362, 1585–1599.CrossRefGoogle Scholar
  25. Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.  https://doi.org/10.1146/annurev.neuro.051508.135409.CrossRefGoogle Scholar
  26. Cohen, N. R., Cross, E. S., Tunik, E., Grafton, S. T., & Culham, J. C. (2009). Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: A TMS approach. Neuropsychologia, 47(6), 1553–1562.  https://doi.org/10.1016/j.neuropsychologia.2008.12.034.CrossRefGoogle Scholar
  27. Colombo, M. (2014). Neural representationalism, the hard problem of content and vitiated verdicts. A reply to Hutto & Myin. Phenomenology and the Cognitive Sciences, 13(2), 257–274.CrossRefGoogle Scholar
  28. Constable, M. D., Kritikos, A., & Bayliss, A. P. (2011). Grasping the concept of personal property. Cognition, 119(3), 430–437.CrossRefGoogle Scholar
  29. Constable, M. D., Kritikos, A., Lipp, O. V., & Bayliss, A. P. (2014). Object ownership and action: The influence of social context and choice on the physical manipulation of personal property. Experimental Brain Research, 232(12), 3749–3761.CrossRefGoogle Scholar
  30. Costantini, M., Ambrosini, E., Scorolli, C., & Borghi, A. M. (2011). When objects are close to me: Affordances in the peripersonal space. Psychonomic Bulletin & Review, 18(2), 302–308.  https://doi.org/10.3758/s13423-011-0054-4.CrossRefGoogle Scholar
  31. Creem-Regehr, S. H., & Lee, J. N. (2005). Neural representations of graspable objects: Are tools special? Brain Research. Cognitive Brain Research, 22(3), 457–469.  https://doi.org/10.1016/j.cogbrainres.2004.10.006.CrossRefGoogle Scholar
  32. Davids, K., Button, C., & Bennett, S. (2007). Dynamics of skill acquisition: A constraints-led approach. Champaign: Human Kinetics.Google Scholar
  33. De Caro, M., & Macarthur, D. (Eds.). (2008). Naturalism in question. Cambridge: Harvard University Press.Google Scholar
  34. De Vignemont, F. (2014). A multimodal conception of bodily awareness. Mind, 123(492), 989–1020.CrossRefGoogle Scholar
  35. Di Paolo, E. D. (2009). Extended life. Topoi, 28(1), 9–21.CrossRefGoogle Scholar
  36. de Wit, M. M., de Vries, S., van der Kamp, J., & Withagen, R. (2017). Affordances and neuroscience: Steps towards a successful marriage. Neuroscience and Biobehavioral Reviews, 80, 622–629.  https://doi.org/10.1016/j.neubiorev.2017.07.008.CrossRefGoogle Scholar
  37. Dennett, D. C. (1987). The intentional stance. Cambridge: MIT Press.Google Scholar
  38. Dijkerman, H. C., McIntosh, R. D., Schindler, I., Nijboer, T. C. W., & Milner, A. D. (2009). Choosing between alternative wrist postures: Action planning needs perception. Neuropsychologia, 47(6), 1476–1482.  https://doi.org/10.1016/j.neuropsychologia.2008.12.002.CrossRefGoogle Scholar
  39. Dretske, F. (1981). Knowledge and the flow of information. Cambridge: MIT Press.Google Scholar
  40. Ellis, R., Tucker, M., Symes, E., & Vainio, L. (2007). Does selecting one visual object from several require inhibition of the actions associated with nonselected objects? Journal of Experimental Psychology. Human Perception and Performance, 33(3), 670–691.  https://doi.org/10.1037/0096-1523.33.3.670.CrossRefGoogle Scholar
  41. Favela, L. H. (2014). Radical embodied cognitive neuroscience: Addressing “grand challenges” of the mind sciences. Frontiers in Human Neuroscience.  https://doi.org/10.3389/fnhum.2014.00796.CrossRefGoogle Scholar
  42. Ferretti, G. (2016). Pictures, action properties and motor related effects. Synthese, Special Issue: Neuroscience and Its Philosophy, 193(12), 3787–3817.CrossRefGoogle Scholar
  43. Ferretti, G. (2017). Two visual systems in Molyneux Subjects. Phenomenology and the Cognitive Sciences, 17(4), 643–679.CrossRefGoogle Scholar
  44. Ferretti, G. (2018). The neural dynamics of seeing-in. Erkenntnis.  https://doi.org/10.1007/s10670-018-0060-2.CrossRefGoogle Scholar
  45. Floridi, L. (2017). A plea for non-naturalism as constructionism. Minds and Machines, 27(2), 269–285.  https://doi.org/10.1007/s11023-017-9422-9.CrossRefGoogle Scholar
  46. Fodor, J. A. (1980). The language of thought (1st ed.). Cambridge: Harvard University Press.Google Scholar
  47. Fox, P. T., & Friston, K. J. (2012). Distributed processing; distributed functions? NeuroImage, 61(2), 407–426.  https://doi.org/10.1016/j.neuroimage.2011.12.051.CrossRefGoogle Scholar
  48. Fuchs, A., & Jirsa, V. K. (Eds.). (2008). Coordination: Neural, behavioral and social dynamics. Berlin: Springer.  https://doi.org/10.1007/978-3-540-74479-5.CrossRefGoogle Scholar
  49. Gadsby, S., & Williams, D. (2018). Action, affordances, and anorexia: Body representation and basic cognition. Synthese, 195, 5297.  https://doi.org/10.1007/s11229-018-1843-3.CrossRefGoogle Scholar
  50. Gallagher, S. (2017). Enactivist interventions: Rethinking the mind (1st ed.). Oxford: Oxford University Press.CrossRefGoogle Scholar
  51. Gentilucci, M., Fogassi, L., Luppino, G., Matelli, M., Camarda, R., & Rizzolatti, G. (1988). Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Experimental Brain Research, 71(3), 475–490.CrossRefGoogle Scholar
  52. Gibson, J. J. (1979). The ecological approach to visual perception (Classic ed.). London: Psychology Press.Google Scholar
  53. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.  https://doi.org/10.1016/0166-2236(92)90344-8 CrossRefGoogle Scholar
  54. Guastello, S., & Gregson, R. (2011). Nonlinear dynamical systems analysis for the behavioral sciences using real data. Books by Marquette University Faculty. Recuperato da. http://epublications.marquette.edu/marq_fac-book/48.
  55. Haken, H., Kelso, J. A. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347–356.  https://doi.org/10.1007/BF00336922.CrossRefGoogle Scholar
  56. Harrison, H. S., Turvey, M. T., & Frank, T. D. (2016). Affordance-based perception-action dynamics: A model of visually guided braking. Psychological Review, 123(3), 305–323.  https://doi.org/10.1037/rev0000029.CrossRefGoogle Scholar
  57. Heft, H. (2001). Ecological psychology in context: James Gibson, Roger Barker, and the legacy of William James’s radical empiricism (1st ed.). Mahwah: Psychology Press.Google Scholar
  58. Heinke, D. (2000). A dynamical system theory approach to cognitive neuroscience. Behavioral and Brain Sciences, 23(4), 543.CrossRefGoogle Scholar
  59. Himmelbach, M., & Karnath, H.-O. (2005). Dorsal and ventral stream interaction: Contributions from optic ataxia. Journal of Cognitive Neuroscience, 17(4), 632–640.  https://doi.org/10.1162/0898929053467514.CrossRefGoogle Scholar
  60. Hornsby, J. (2001). Simple mindedness: In defense of naive naturalism in the philosophy of mind. Cambridge: Harvard University Press.Google Scholar
  61. Horst, S. (2009). Naturalisms in philosophy of mind. Philosophy Compass, 4(1), 219–254.  https://doi.org/10.1111/j.1747-9991.2008.00191.x.CrossRefGoogle Scholar
  62. Horst, S. (2011). Symbols, computation, and intentionality. Berkeley: University of California Press.Google Scholar
  63. Hoshi, E., & Tanji, J. (2007). Distinctions between dorsal and ventral premotor areas: Anatomical connectivity and functional properties. Current Opinion in Neurobiology, 17(2), 234–242.  https://doi.org/10.1016/j.conb.2007.02.003.CrossRefGoogle Scholar
  64. Hutto, D. D., & Myin, E. (2012). Radicalizing enactivism: Basic minds without content. Cambridge: MIT Press.CrossRefGoogle Scholar
  65. Hutto, D. D., & Myin, E. (2017). Evolving enactivism: Basic minds meet content. Cambridge: MIT Press.Google Scholar
  66. Hutzler, F. (2014). Reverse inference is not a fallacy per se: Cognitive processes can be inferred from functional imaging data. NeuroImage, 84, 1061–1069.  https://doi.org/10.1016/j.neuroimage.2012.12.075.CrossRefGoogle Scholar
  67. Jacob, P., & De Vignemont, F. (2010). Spatial coordinates and phenomenology in the two visual systems model. In N. Gangopadhyay, M. Madary, & F. Spicer (Eds.), Perception, action and consciousness. Oxford: Oxford University Press.Google Scholar
  68. Jacob, P., & Jeannerod, M. (2003). Ways of seeing: The scope and limits of visual cognition. Oxford: Oxford University Press.CrossRefGoogle Scholar
  69. Jeannerod, M., Decety, J., & Michel, F. (1994). Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia, 32(4), 369–380.CrossRefGoogle Scholar
  70. Jiang, Y., & Mark, L. S. (1994). The effect of gap depth on the perception of whether a gap is crossable. Perception and Psychophysics, 56(6), 691–700.CrossRefGoogle Scholar
  71. Kalénine, S., Shapiro, A. D., Flumini, A., Borghi, A. M., & Buxbaum, L. J. (2014). Visual context modulates potentiation of grasp types during semantic object categorization. Psychonomic Bulletin & Review, 21(3), 645–651.  https://doi.org/10.3758/s13423-013-0536-7.CrossRefGoogle Scholar
  72. Kiefer, M., Sim, E.-J., Liebich, S., Hauk, O., & Tanaka, J. (2007). Experience-dependent plasticity of conceptual representations in human sensory-motor areas. Journal of Cognitive Neuroscience, 19(3), 525–542.  https://doi.org/10.1162/jocn.2007.19.3.525.CrossRefGoogle Scholar
  73. Kim, S., & Frank, T. D. (2016). Body-scaled perception is subjected to adaptation when repetitively judging opportunities for grasping. Experimental Brain Research, 234(9), 2731–2743.  https://doi.org/10.1007/s00221-016-4677-6.CrossRefGoogle Scholar
  74. Lee, C., Middleton, E., Mirman, D., Kalénine, S., & Buxbaum, L. J. (2013). Incidental and context-responsive activation of structure- and function-based action features during object identification. Journal of Experimental Psychology: Human Perception and Performance, 39(1), 257–270.  https://doi.org/10.1037/a0027533.CrossRefGoogle Scholar
  75. Loh, M., Rolls, E. T., & Deco, G. (2007). A dynamical systems hypothesis of schizophrenia. PLoS Computational Biology, 3(11), e228.  https://doi.org/10.1371/journal.pcbi.0030228.CrossRefGoogle Scholar
  76. Lopresti-Goodman, S. M., Turvey, M. T., & Frank, T. D. (2011). Behavioral dynamics of the affordance «graspable». Attention, Perception, & Psychophysics, 73(6), 1948–1965.  https://doi.org/10.3758/s13414-011-0151-5.CrossRefGoogle Scholar
  77. Lopresti-Goodman, S. M., Turvey, M. T., & Frank, T. D. (2013). Negative hysteresis in the behavioral dynamics of the affordance «graspable». Attention, Perception, & Psychophysics, 75(5), 1075–1091.  https://doi.org/10.3758/s13414-013-0437-x.CrossRefGoogle Scholar
  78. Machery, E. (2014). In defense of reverse inference. The British Journal for the Philosophy of Science, 65(2), 251–267.  https://doi.org/10.1093/bjps/axs044.CrossRefGoogle Scholar
  79. Makris, S., Hadar, A. A., & Yarrow, K. (2013). Are object affordances fully automatic? A case of covert attention. Behavioral Neuroscience, 127(5), 797–802.  https://doi.org/10.1037/a0033946.CrossRefGoogle Scholar
  80. Mark, L. S. (1987). Eyeheight-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 361–370.Google Scholar
  81. Mark, L. S., & Vogele, D. (1987). A biodynamic basis for perceived categories of action: A study of sitting and stair climbing. Journal of Motor Behavior, 19(3), 367–384.CrossRefGoogle Scholar
  82. Maturana, H. R., & Varela, F. J. (1991). Autopoiesis and cognition: The realization of the living. Berlin: Springer.Google Scholar
  83. Mcculloch, W. S., & Pitts, W. (1944). A logical calculus of the ideas immanent in nervous activity. Journal of Symbolic Logic, 9(2), 49–50.CrossRefGoogle Scholar
  84. McDowell, J. H. (1996). Mind and world. Cambridge: Harvard University Press.Google Scholar
  85. McIntosh, R. D., & Schenk, T. (2009). Two visual streams for perception and action: Current trends. Neuropsychologia, 47(6), 1391–1396.  https://doi.org/10.1016/j.neuropsychologia.2009.02.009.CrossRefGoogle Scholar
  86. Millikan, R. (1989). Biosemantics. The Journal of Philosophy, 86(6), 281–297.CrossRefGoogle Scholar
  87. Milner, A. D., Perrett, D. I., Johnston, R. S., Benson, P. J., Jordan, T. R., Heeley, D. W., et al. (1991). Perception and action in «visual form agnosia». Brain: A Journal of Neurology, 114(Pt 1B), 405–428.CrossRefGoogle Scholar
  88. Nanay, B. (2013). Is action-guiding vision cognitively impenetrable? In Proceedings of the 35th annual conference of the cognitive science society (CogSci 2013) (pp. 1055–1060). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  89. Nathan, M. J., & Pinal, G. D. (2017). The future of cognitive neuroscience? Reverse inference in focus. Philosophy Compass, 12(7), e12427.  https://doi.org/10.1111/phc3.12427.CrossRefGoogle Scholar
  90. Noë, A. (2004). Action in perception. Cambridge: MIT Press.Google Scholar
  91. O’Regan, J. K. (2011). Why red doesn’t sound like a bell: Understanding the feel of consciousness. Oxford: Oxford University Press.CrossRefGoogle Scholar
  92. O’Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. The Behavioral and Brain Sciences, 24(5), 939–973; discussion 973–1031.CrossRefGoogle Scholar
  93. Pacherie, E. (2008). The phenomenology of action: A conceptual framework. Cognition, 107(1), 179–217.  https://doi.org/10.1016/j.cognition.2007.09.003.CrossRefGoogle Scholar
  94. Papineau, D. (1987). Reality and representation. Oxford: Blackwell.Google Scholar
  95. Pellicano, A., Thill, S., Ziemke, T., & Binkofski, F. (2011). Affordances, adaptive tool use and grounded cognition. Frontiers in Psychology.  https://doi.org/10.3389/fpsyg.2011.00053.CrossRefGoogle Scholar
  96. Poil, S.-S., van Ooyen, A., & Linkenkaer-Hansen, K. (2008). Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations. Human Brain Mapping, 29(7), 770–777.  https://doi.org/10.1002/hbm.20590.CrossRefGoogle Scholar
  97. Poldrack, R. A. (2008). The role of fMRI in cognitive neuroscience: Where do we stand? Current Opinion in Neurobiology, 18(2), 223–227.  https://doi.org/10.1016/j.conb.2008.07.006.CrossRefGoogle Scholar
  98. Psillos, S. (2005). Scientific realism: How science tracks truth. Abingdon: Routledge.CrossRefGoogle Scholar
  99. Pylyshyn, Z. (2003). Seeing and visualizing: It’s not what you think. Cambridge: MIT Press.Google Scholar
  100. Raftoupolus, A. (2009). Cognition and perception. How do psychology and neural science. Cambridge: MIT Press.Google Scholar
  101. Ramstead, M. J. D., Veissière, S. P. L., & Kirmayer, L. J. (2016). Cultural affordances: Scaffolding local worlds through shared intentionality and regimes of attention. Frontiers in Psychology.  https://doi.org/10.3389/fpsyg.2016.01090.CrossRefGoogle Scholar
  102. Raos, V., Umiltá, M.-A., Murata, A., Fogassi, L., & Gallese, V. (2006). Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. Journal of Neurophysiology, 95(2), 709–729.  https://doi.org/10.1152/jn.00463.2005.CrossRefGoogle Scholar
  103. Rietveld, E. (2008). Special section: The skillful body as a concernful system of possible actions: Phenomena and neurodynamics. Theory & Psychology, 18(3), 341–363.  https://doi.org/10.1177/0959354308089789.CrossRefGoogle Scholar
  104. Rietveld, E., & Kiverstein, J. (2014). A rich landscape of affordances. Ecological Psychology, 26(4), 325–352.  https://doi.org/10.1080/10407413.2014.958035.CrossRefGoogle Scholar
  105. Rowe, P. J., Haenschel, C., Kosilo, M., & Yarrow, K. (2017). Objects rapidly prime the motor system when located near the dominant hand. Brain and Cognition, 113, 102–108.  https://doi.org/10.1016/j.bandc.2016.11.005.CrossRefGoogle Scholar
  106. Schenk, T., & McIntosh, R. D. (2010). Do we have independent visual streams for perception and action? Cognitive Neuroscience, 1(1), 52–62.  https://doi.org/10.1080/17588920903388950.CrossRefGoogle Scholar
  107. Schindler, I., Rice, N. J., McIntosh, R. D., Rossetti, Y., Vighetto, A., & Milner, A. D. (2004). Automatic avoidance of obstacles is a dorsal stream function: Evidence from optic ataxia. Nature Neuroscience, 7(7), 779–784.  https://doi.org/10.1038/nn1273.CrossRefGoogle Scholar
  108. Searle, J. R. (1983). Intentionality: An essay in the philosophy of mind. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  109. Spivey, M. (2008). The continuity of mind. Oxford: Oxford University Press.Google Scholar
  110. Stark, E., Asher, I., & Abeles, M. (2007). Encoding of reach and grasp by single neurons in premotor cortex is independent of recording site. Journal of Neurophysiology, 97(5), 3351–3364.  https://doi.org/10.1152/jn.01328.2006.CrossRefGoogle Scholar
  111. Thill, S., Caligiore, D., Borghi, A. M., Ziemke, T., & Baldassarre, G. (2013). Theories and computational models of affordance and mirror systems: An integrative review. Neuroscience and Biobehavioral Reviews, 37(3), 491–521.  https://doi.org/10.1016/j.neubiorev.2013.01.012.CrossRefGoogle Scholar
  112. Thompson, E. (2007). Mind in life: Biology, phenomenology, and the sciences of mind. Cambridge: Harvard University Press.Google Scholar
  113. Tipper, S. P., Paul, M. A., & Hayes, A. E. (2006). Vision-for-action: The effects of object property discrimination and action state on affordance compatibility effects. Psychonomic Bulletin & Review, 13(3), 493–498.CrossRefGoogle Scholar
  114. Toribio, J. (2018). Are visuomotor representations cognitively penetrable? Biasing action-guiding vision. Synthese.  https://doi.org/10.1007/s11229-018-1854-0.CrossRefGoogle Scholar
  115. Turvey, M. T., Shaw, R. E., Reed, E. S., & Mace, W. M. (1981). Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981). Cognition, 9(3), 237–304.CrossRefGoogle Scholar
  116. van Dijk, L., & Rietveld, E. (2016). Foregrounding sociomaterial practice in our understanding of affordances: The skilled intentionality framework. Frontiers in Psychology, 7, 1969.  https://doi.org/10.3389/fpsyg.2016.01969.CrossRefGoogle Scholar
  117. van Gelder, T. (1995). What might cognition be if not computation? Journal of Philosophy, 92(7), 345–381.CrossRefGoogle Scholar
  118. Vingerhoets, G. (2008). Knowing about tools: Neural correlates of tool familiarity and experience. NeuroImage, 40(3), 1380–1391.  https://doi.org/10.1016/j.neuroimage.2007.12.058.CrossRefGoogle Scholar
  119. Vingerhoets, G., Acke, F., Vandemaele, P., & Achten, E. (2009). Tool responsive regions in the posterior parietal cortex: Effect of differences in motor goal and target object during imagined transitive movements. NeuroImage, 47(4), 1832–1843.  https://doi.org/10.1016/j.neuroimage.2009.05.100.CrossRefGoogle Scholar
  120. Walmsley, J. (2008). Explanation in dynamical cognitive science. Minds and Machines, 18(3), 331–348.CrossRefGoogle Scholar
  121. Ward, D., Silverman, D., & Villalobos, M. (2017). Introduction: The varieties of enactivism. Topoi An International Review of Philosophy, 36, 365.  https://doi.org/10.1007/s11245-017-9484-6.CrossRefGoogle Scholar
  122. Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 683–703.Google Scholar
  123. Withagen, R., de Poel, H. J., Araújo, D., & Pepping, G.-J. (2012). Affordances can invite behavior: Reconsidering the relationship between affordances and agency. New Ideas in Psychology, 30(2), 250–258.  https://doi.org/10.1016/j.newideapsych.2011.12.003.CrossRefGoogle Scholar
  124. Zgaljardic, D. J., Yancy, S., Levinson, J., Morales, G., & Masel, B. E. (2011). Balint’s syndrome and post-acute brain injury rehabilitation: A case report. Brain Injury, 25(9), 909–917.  https://doi.org/10.3109/02699052.2011.585506.CrossRefGoogle Scholar
  125. Zipoli Caiani, S. (2014). Extending the notion of affordance. Phenomenology and the Cognitive Sciences, 13(2), 275–293.  https://doi.org/10.1007/s11097-013-9295-1.CrossRefGoogle Scholar
  126. Zipoli Caiani, S. (2017). When the affordances disappear: Dynamical and computational explanations of optic ataxia. Theory & Psychology, 2(5), 663–682.  https://doi.org/10.1177/0959354317722867.CrossRefGoogle Scholar
  127. Zipoli Caiani, S., & Ferretti, G. (2017). Semantic and pragmatic integration in vision for action. Consciousness and Cognition, 48, 40–54.  https://doi.org/10.1016/j.concog.2016.10.009.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Università degli Studi di FirenzeFirenzeItaly

Personalised recommendations