# Desirability foundations of robust rational decision making

- 46 Downloads

## Abstract

Recent work has formally linked the traditional axiomatisation of incomplete preferences à la Anscombe-Aumann with the theory of desirability developed in the context of imprecise probability, by showing in particular that they are the very same theory. The equivalence has been established under the constraint that the set of possible prizes is finite. In this paper, we relax such a constraint, thus de facto creating one of the most general theories of rationality and decision making available today. We provide the theory with a sound interpretation and with basic notions, and results, for the separation of beliefs and values, and for the case of complete preferences. Moreover, we discuss the role of conglomerability for the presented theory, arguing that it should be a rationality requirement under very broad conditions.

## Keywords

Decision theory Incomplete preferences Desirability Imprecise probability Foundations## Notes

### Acknowledgements

The authors are grateful to the anonymous referees for a careful reading of the paper and in particular to Referee 1 for having spotted some technical problems that are now fixed.

## References

- Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’école Américaine.
*Econometrica*,*21*(4), 503–546.CrossRefGoogle Scholar - Anscombe, F. J., & Aumann, R. J. (1963). A definition of subjective probability.
*The Annals of Mathematical Statistics*,*34*, 199–2005.CrossRefGoogle Scholar - Armstrong, T. (1990). Conglomerability of probability measures on Boolean algebras.
*Journal of Mathematical Analysis and Applications*,*150*(2), 335–358.CrossRefGoogle Scholar - Augustin, T., Coolen, F., de Cooman, G., & Troffaes, M. (Eds.). (2014).
*Introduction to imprecise probabilities*. Hoboken: Wiley.Google Scholar - Benavoli, A., Facchini, A., & Zaffalon, M. (2016a). Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices.
*Physical Review A*,*94*, 042106.CrossRefGoogle Scholar - Benavoli, A., Facchini, A., & Zaffalon, M. (2016b). Quantum rational preferences and desirability. In
*Proceedings of The 1st International Workshop on “Imperfect Decision Makers: Admitting Real-World Rationality” (NIPS 2016)*, JMLR.org, PMLR (Vol. 58, pp. 87–96).Google Scholar - Berti, P., Miranda, E., & Rigo, P. (2017). Basic ideas underlying conglomerability and disintegrability.
*International Journal of Approximate Reasoning*,*88*, 387–400.CrossRefGoogle Scholar - Bewley, T. (2002). Knightian decision theory: Part I.
*Decisions in Economics and Finance*,*25*, 79–110. (reprint of Discussion Paper 807, Cowles Foundation, (1986)).CrossRefGoogle Scholar - Carnap, R. (1980).
*The problem of a more general concept of regularity*(Vol. 2, pp. 145–155). Berkeley: University of Califormia Press.Google Scholar - Cerreira-Vioglio, S., Maccheroni, F., & Marinacci, M. (2016). Stochastic dominance analysis without the independence axiom.
*Management Science*,*63*(4), 1097–1109.CrossRefGoogle Scholar - Coletti, G., & Scozzafava, R. (2002).
*Probabilistic logic in a coherent setting*. Dordrecht: Kluwer.CrossRefGoogle Scholar - Corani, G., & Zaffalon, M. (2008). Learning reliable classifiers from small or incomplete data sets: The naive credal classifier 2.
*Journal of Machine Learning Research*,*9*, 581–621.Google Scholar - Couso, I., & Moral, S. (2011). Sets of desirable gambles: Conditioning, representation, and precise probabilities.
*International Journal of Approximate Reasoning*,*52*, 1034–1055.CrossRefGoogle Scholar - Cozman, F. G. (2012). Sets of probability distributions, independence, and convexity.
*Synthese*,*186*(2), 577–600.CrossRefGoogle Scholar - De Bock, J. (2017). Independent natural extension for sets of desirable gambles: Williams-coherence to the rescue. In A. Antonucci, G. Corani, I. Couso, & S. Destercke (Eds.),
*ISIPTA’17: Proceedings of the 10th International Symposium on Imprecise Probability: Theories and Applications*(Vol. 62, pp. 121–132). PMLR.Google Scholar - De Bock, J., & de Cooman, G. (2014). An efficient algorithm for estimating state sequences in imprecise hidden Markov models.
*Journal of Artificial Intelligence Research*,*50*, 189–233.CrossRefGoogle Scholar - De Bock, J., & de Cooman, G. (2015a). Conditioning, updating and lower probability zero.
*International Journal of Approximate Reasoning*,*67*, 1–36.CrossRefGoogle Scholar - De Bock, J., & de Cooman, G. (2015b). Credal networks under epistemic irrelevance: The sets of desirable gambles approach.
*International Journal of Approximate Reasoning*,*56*, 178–207.CrossRefGoogle Scholar - De Cooman, G., & Hermans, F. (2008). Imprecise probability trees: Bridging two theories of imprecise probability.
*Artificial Intelligence*,*172*(11), 1400–1427.CrossRefGoogle Scholar - De Cooman, G., & Miranda, E. (2009). Forward irrelevance.
*Journal of Statistical Planning and Inference*,*139*(2), 256–276.CrossRefGoogle Scholar - De Cooman, G., & Miranda, E. (2012). Irrelevance and independence for sets of desirable gambles.
*Journal of Artificial Intelligence Research*,*45*, 601–640.CrossRefGoogle Scholar - De Cooman, G., & Quaeghebeur, E. (2012). Exchangeability and sets of desirable gambles.
*International Journal of Approximate Reasoning*,*53*, 363–395. (special issue in honour of Henry E. Kyburg, Jr.).CrossRefGoogle Scholar - De Finetti, B. (1931). Sul significato soggettivo della probabilità.
*Fundamenta Mathematicae*,*17*, 298–329.CrossRefGoogle Scholar - De Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré 7:1–68, English translation in Kyburg Jr. and Smokler (1964).Google Scholar
- De Finetti, B. (1970).
*Teoria delle Probabilità*. Turin: Einaudi.Google Scholar - De Finetti, B. (1974). Theory of probability: A critical introductory treatment (Vol. 1). Chichester: Wiley, English translation of de Finetti (1970).Google Scholar
- Del Amo, A. G., & Ríos Insua, D. (2002). A note on an open problem in the foundations of statistics.
*RACSAM*,*96*(1), 55–61.Google Scholar - DiBella, N. (2018). The qualitative paradox of non-conglomerability.
*Synthese*,*195*(3), 1181–1210.CrossRefGoogle Scholar - Dietterich, T. G. (2017). Steps toward robust artificial intelligence.
*AI Magazine*,*38*(3), 3–24.CrossRefGoogle Scholar - Domshlak, C., Hüllermeier, E., Kaci, S., & Prade, H. (2011). Preferences in AI: An overview.
*Artificial Intelligence*,*175*(7–8), 1037–1052.CrossRefGoogle Scholar - Dubins, L. E. (1975). Finitely additive conditional probabilities, conglomerability and disintegrations.
*The Annals of Probability*,*3*, 88–99.Google Scholar - Dubois, D., Fargier, H., & Perny, P. (2003). Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach.
*Artificial Intelligence*,*148*(1–2), 219–260.CrossRefGoogle Scholar - Dubra, J., Maccheroni, F., & Ok, E. (2004). Expected utility theory without the completeness axiom.
*Journal of Economic Theory*,*115*, 118–133.CrossRefGoogle Scholar - Galaabaatar, T., & Karni, E. (2013). Subjective expected utility with incomplete preferences.
*Econometrica*,*81*(1), 255–284.CrossRefGoogle Scholar - Ghirardato, P., & Siniscalchi, M. (2012). Ambiguity in the small and in the large.
*Econometrica*,*80*(6), 2827–2847.CrossRefGoogle Scholar - Hacking, I. (1967). Slightly more realistic personal probability.
*Philosophy of Science*,*34*(4), 311–325.CrossRefGoogle Scholar - Hájek, A., & Smithson, M. (2012). Rationality and indeterminate probabilities.
*Synthese*,*187*(1), 33–48.CrossRefGoogle Scholar - Hill, B., & Lane, D. (1985). Conglomerability and countable additivity.
*Sankhya*,*47*, 366–379.Google Scholar - Howson, C. (2009). Can logic be combined with probability? Probably.
*Journal of Applied Logic*,*7*, 177–187.CrossRefGoogle Scholar - Howson, C. (2011). Bayesianism as a pure logic of inference. In P. S. Bandyopadhyay & M. R. Forster (Eds.),
*Handbook of the philosophy of science, vol 7: Philosophy of statistics*(pp. 441–471). Amsterdam: Elsevier.Google Scholar - Kikuti, D., Cozman, F. G., & Filho, R. S. (2011). Sequential decision making with partially ordered preferences.
*Artificial Intelligence*,*175*(7–8), 1346–1365.CrossRefGoogle Scholar - Kyburg, H.E. Jr., & Smokler, H.E. (Eds.) (1964)
*Studies in subjective probability*(2 Ed.). New York: Wiley (with new material) (1980).Google Scholar - Luce, R. D., & Krantz, D. H. (1971). Conditional expected utility.
*Econometrica*,*39*(2), 253–271.CrossRefGoogle Scholar - Machina, M. (1982). “Expected utility” analysis without the independence axiom.
*Econometrica*,*50*(2), 277–323.CrossRefGoogle Scholar - Miranda, E. (2008). A survey of the theory of coherent lower previsions.
*International Journal of Approximate Reasoning*,*48*(2), 628–658.CrossRefGoogle Scholar - Miranda, E., & de Cooman, G. (2007). Marginal extension in the theory of coherent lower previsions.
*International Journal of Approximate Reasoning*,*46*(1), 188–225.CrossRefGoogle Scholar - Miranda, E., & Zaffalon, M. (2010). Notes on desirability and conditional lower previsions.
*Annals of Mathematics and Artificial Intelligence*,*60*(3–4), 251–309.CrossRefGoogle Scholar - Miranda, E., & Zaffalon, M. (2015a). Independent products in infinite spaces.
*Journal of Mathematical Analysis and Applications*,*425*(1), 460–488.CrossRefGoogle Scholar - Miranda, E., & Zaffalon, M. (2015b). On the problem of computing the conglomerable natual extension.
*International Journal of Approximate Reasoning*,*56*, 1–27.CrossRefGoogle Scholar - Miranda, E., & Zaffalon, M. (2016). Conformity and independence with coherent lower previsions.
*International Journal of Approximate Reasoning*,*78*, 125–137.CrossRefGoogle Scholar - Miranda, E., Zaffalon, M., & de Cooman, G. (2012). Conglomerable natural extension.
*International Journal of Approximate Reasoning*,*53*(8), 1200–1227.CrossRefGoogle Scholar - Moral, S. (2005). Epistemic irrelevance on sets of desirable gambles.
*Annals of Mathematics and Artificial Intelligence*,*45*, 197–214.CrossRefGoogle Scholar - Nau, R. (2006). The shape of incomplete preferences.
*The Annals of Statistics*,*34*(5), 2430–2448.CrossRefGoogle Scholar - Nau, R. (2011). Risk, ambiguity, and state-preference theory.
*Economic Theory*,*48*(2–3), 437–467.CrossRefGoogle Scholar - Ok, E., Ortoleva, P., & Riella, G. (2012). Incomplete preferences under uncertainty: Indecisiveness in beliefs versus tastes.
*Econometrica*,*80*(4), 1791–1808.CrossRefGoogle Scholar - Pedersen, A. P. (2014). Comparative expectations.
*Studia Logica*,*102*(4), 811–848.CrossRefGoogle Scholar - Pigozzi, G., Tsoukiàs, A., & Viappiani, P. (2016). Preferences in artificial intelligence.
*Annals of Mathematics and Artificial Intelligence*,*77*(3–4), 361–401.CrossRefGoogle Scholar - Savage, L. J. (1954).
*The foundations of statistics*. New York: Wiley.Google Scholar - Seidenfeld, T., Schervish, M. J., & Kadane, J. B. (1995). A representation of partially ordered preferences.
*The Annals of Statistics*,*23*, 2168–2217. (reprinted in Seidenfeld et al. (1999), (pp. 69–129)).CrossRefGoogle Scholar - Seidenfeld, T., Schervisch, M. J., & Kadane, J. B. (1998). Non-conglomerability for finite-valued finitely additive probability.
*Sankhya*,*60*(3), 476–491.Google Scholar - Seidenfeld, T., Schervish, M. J., & Kadane, J. B. (1999).
*Rethinking the foundations of statistics*. Cambridge: Cambridge University Press.Google Scholar - Seidenfeld, T., Schervisch, M. J., & Kadane, J. B. (2010). Coherent choice functions under uncertainty.
*Synthese*,*172*(1), 157–176.CrossRefGoogle Scholar - Shafer, G., Gillett, P. R., & Scherl, R. B. (2003). A new understanding of subjective probability and its generalization to lower and upper prevision.
*International Journal of Approximate Reasoning*,*33*, 1–49.CrossRefGoogle Scholar - Shimony, A. (1955). Coherence and the axioms of confirmation.
*The Journal of Symbolic Logic*,*20*(1), 1–28.CrossRefGoogle Scholar - Skyrms, B. (1980).
*Causal necessity*. New Haven: Yale University Press.Google Scholar - Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty.
*Journal of Risk and Uncertainty*,*5*(4), 297–323.CrossRefGoogle Scholar - Van Camp, A. (2018).
*Choice functions as a tool to model uncertainty*. Ph.D. thesis, University of Ghent.Google Scholar - Van Camp, A., de Cooman, G., Miranda, E., & Quaeghebeur, E. (2018a). Coherent choice functions, desirability and indifference.
*Fuzzy Sets and Systems*,*341*(C), 1–36.CrossRefGoogle Scholar - Van Camp, A., Miranda, E., & de Cooman, G. (2018b). Lexicographic choice functions.
*International Journal of Approximate Reasoning*,*92*, 97–119.CrossRefGoogle Scholar - Von Neumann, J., & Morgestern, O. (1947).
*Theory of games and economic behaviour*. Princeton: Princeton University Press.Google Scholar - Walley, P. (1991).
*Statistical reasoning with imprecise probabilities*. London: Chapman and Hall.CrossRefGoogle Scholar - Williams, P. M. (1975).
*Notes on conditional previsions*. Tech. rep., School of Mathematical and Physical Science, University of Sussex, UK, reprinted in Williams (2007).Google Scholar - Williams, P. M. (2007). Notes on conditional previsions.
*International Journal of Approximate Reasoning*,*44*, 366–383. (revised journal version of Williams (1975)).CrossRefGoogle Scholar - Zaffalon, M., & Miranda, E. (2013). Probability and time.
*Artificial Intelligence*,*198*(1), 1–51.CrossRefGoogle Scholar - Zaffalon, M., & Miranda, E. (2015). Desirability and the birth of incomplete preferences. CoRR abs/1506.00529. arxiv:1506.00529.
- Zaffalon, M., & Miranda, E. (2017). Axiomatising incomplete preferences through sets of desirable gambles.
*Journal of Artificial Intelligence Research*,*60*, 1057–1126.CrossRefGoogle Scholar