Advertisement

Synthese

pp 1–30 | Cite as

Epistemic injustice in mathematics

  • Colin Jakob RittbergEmail author
  • Fenner Stanley Tanswell
  • Jean Paul Van Bendegem
S.I.: MathCogEncul
  • 130 Downloads

Abstract

We investigate how epistemic injustice can manifest itself in mathematical practices. We do this as both a social epistemological and virtue-theoretic investigation of mathematical practices. We delineate the concept both positively—we show that a certain type of folk theorem can be a source of epistemic injustice in mathematics—and negatively by exploring cases where the obstacles to participation in a mathematical practice do not amount to epistemic injustice. Having explored what epistemic injustice in mathematics can amount to, we use the concept to highlight a potential danger of intellectual enculturation.

Keywords

Epistemic injustice Virtues Philosophy of mathematics Folk theorems Caramello Royen Ramanujan Enculturation 

Notes

Acknowledgements

The authors are indebted to Ladislav Kvasz for a very fruitful discussion about folk theorems. We thank Olivia Caramello for her comments and discussion on the folk theorem section and Katherine Hawley for her helpful comments on Sect. 2. We would also like to thank Andrew Aberdein, Neil Barton, Catarina Dutilh-Novaes, Alessandra Tanesini, Benedikt Löwe, Josh Habgood-Coote, and the audiences at St Andrews, Munich, Hamburg and the CLWF in Brussels for their helpful criticisms on presentations of drafts of this paper. Furthermore, we thank two anonymous referees for their very helpful remarks. Research for this paper by the first author has been funded by the Research Foundation—Flanders (FWO), Project G056716N. Research for this paper by the second author was supported by the EPSRC grant for the project ‘The Social Machine of Mathematics’ led by Prof. Ursula Martin [EP/K040251/2].

References

  1. Aberdein, A. (2010). Observations on sick mathematics. In B. Van Kerkhove, J. P. Van Bendegem, & J. De Vuyst (Eds.), Philosophical perspectives on mathematical practice (pp. 269–300). London: College Publications.Google Scholar
  2. Aberdein, A. (2014). Virtues and arguments: A bibliography. https://www.academia.edu/5620761/Virtues_and_Arguments_A_Bibliography. Accessed 24 Oct 2018.
  3. Aberdein, A. (2016). The vices of argument. Topoi, 35(2), 413–422.CrossRefGoogle Scholar
  4. Anderl, S. (2017). Der Beweis. Frankfurter Allgeimene Zeitung, 7th April 2017. Available online http://plus.faz.net/feuilleton/2017-04-07/der-beweis/338154.html/. Accessed 26 Jan 2018.
  5. Andersen, L. E. (2017). On the nature and role of peer review in mathematics. Accountability in Research, 24(3), 177–192.CrossRefGoogle Scholar
  6. Battaly, H. (2017). Testimonial injustice, epistemic vice, and vice epistemology. In I. J. Kidd, J. Medina, & G. Pohlhaus (Eds.), The Routledge handbook of epistemic injustice (pp. 223–232). London: Routledge.Google Scholar
  7. Berndt, B. C., & Rankin, R. A. (1995). Ramanujan. Letters and commentary. Providence/London: AMS/LMS.CrossRefGoogle Scholar
  8. Berry, D. (2016). Proof and the virtues of shared enquiry. Philosophia Mathematica (III), 26(1), 112–130.Google Scholar
  9. Carel, H., & Györffy, G. (2014). Seen but not heard: Children and epistemic injustice. The Lancet, 384(9950), 1256–1257.CrossRefGoogle Scholar
  10. Carel, H., & Kidd, I. J. (2014). Epistemic injustice in healthcare: A philosophical analysis. Medicine, Health Care and Philosophy, 17(4), 529–540.CrossRefGoogle Scholar
  11. Cassam, Q. (2016). Vice epistemology. The Monist, 99(2), 159–180.CrossRefGoogle Scholar
  12. Chang, H. (2011). Beyond case-studies: History as philosophy. In S. Mauskopf & T. Schmaltz (Eds.), Integrating history and philosophy of science (pp. 109–124). Berlin: Springer.CrossRefGoogle Scholar
  13. De Cezaro, A., & Johansson, B. T. (2012). A note on uniqueness in the identification of a spacewise dependent source and diffusion coefficient for the heat equation. arXiv preprint arXiv:1210.7346.
  14. De Millo, R. A., Lipton, R. J., & Perlis, A. J. (1979). Social processes and proofs of theorems and programs. Communications of the ACM, 22(5), 271–280.CrossRefGoogle Scholar
  15. Decock, L. (2002). A Lakatosian approach to the Quine–Maddy debate. Logique et Analyse, 45(179/180), 249–268.Google Scholar
  16. Derridj, M., & Helffer, B. (2010). On the subellipticity of some hypoelliptic quasihomogeneous systems of complex vector fields. In P. Ebenfelt, N. Hungerbühler, J. J. Kohn, N. Mok, & E. J. Straube (Eds.), Complex analysis. Trends in mathematics (pp. 109–123). Basel: Springer.CrossRefGoogle Scholar
  17. Easwaran, K. (2009). Probabilistic proofs and transferability. Philosophia Mathematica (III), 17(3), 341–362.CrossRefGoogle Scholar
  18. Fricker, M. (2007). Epistemic injustice: Power and the ethics of knowing. Oxford: Oxford University Press.CrossRefGoogle Scholar
  19. Geist, C., Löwe, B., & Van Kerkhove, B. (2010). Peer review and knowledge by testimony in mathematics. In B. Löwe & T. Müller (Eds.), PhiMSAMP. Philosophy of mathematics: Sociological aspects and mathematical practice (pp. 155–178). London: College Publications.Google Scholar
  20. Goldman, A. (1999). Knowledge in a social world. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Grasswick, H. (2017). Epistemic injustice in science. In I. J. Kidd, J. Medina, & G. Pohlhaus (Eds.), The Routledge handbook of epistemic injustice (pp. 313–323). London: Routledge.Google Scholar
  22. Haddock, A., Millar, A., & Pritchard, D. (Eds.). (2010). Social epistemology. Oxford: Oxford University Press.Google Scholar
  23. Hardy, G. H., Aiyar, P. V. S., & Wilson, B. M. (1927). Collected papers of Srinivasa Ramanujan. Cambridge: Cambridge University Press.Google Scholar
  24. Hardy, G. H., & Wright, E. M. (1975). An introduction to the theory of numbers (4th ed.). Oxford: Oxford University Press.Google Scholar
  25. Harel, D. (1980). On folk theorems. Communications of the ACM, 23(7), 379–389.CrossRefGoogle Scholar
  26. Harris, M. (2015). Mathematics without apologies: Portrait of a problematic vocation. Princeton: Princeton University Press.CrossRefGoogle Scholar
  27. Hersh, R. (1997). What is mathematics, really?. London: Jonathan Cape.Google Scholar
  28. Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society, 37(4), 407–436.CrossRefGoogle Scholar
  29. Hoffman, P. (1998). The man who loved only numbers. The story of Paul Erdös and the search for mathematical truth. London: Fourth Estate.Google Scholar
  30. Hookway, C. (2010). Some varieties of epistemic injustice: Reflections on Fricker. Episteme, 7(2), 151–163.CrossRefGoogle Scholar
  31. Inglis, M., & Aberdein, A. (2014). Beauty is not simplicity: An analysis of mathematicians’ proof appraisals. Philosophia Mathematica (III), 23(1), 87–109.CrossRefGoogle Scholar
  32. Kanigel, R. (1991). The man who knew infinity: A life of the genius Ramanujan. London: Abacus.Google Scholar
  33. Kidd, I. J. (2016). Charging others with epistemic vice. The Monist, 99(2), 181–197.CrossRefGoogle Scholar
  34. Kidd, I. J., & Pohlhaus, J. G. (Eds.). (2017). The Routledge handbook of epistemic injustice. New York: Taylor & Francis.Google Scholar
  35. Kroeber, A. L., & Kluckhohn, C. (1952). Culture: A critical review of concepts and definitions. Papers. Peabody Museum of Archaeology and Ethnology. Cambridge: Harvard University.Google Scholar
  36. Kuhn, T. S. (1977). The essential tension: Selected studies in scientific tradition and change. Chicago: University of Chicago Press.Google Scholar
  37. Lackey, J. (2008). Learning from words: Testimony as a source of knowledge. Oxford: Oxford University Press.CrossRefGoogle Scholar
  38. Lane, L. D. (2017). Bridge between worlds: Relating position and disposition in the mathematical field. PhD thesis, University of Edinburgh.Google Scholar
  39. Lange, M. (2016). Explanatory proofs and beautiful proofs. Journal of Humanistic Mathematics, 6(1), 8–51.CrossRefGoogle Scholar
  40. Lassez, J., Nguyen, V. L., & Sonenberg, E. A. (1982). Fixed point theorems and semantics: A folk tale. Information Processing Letters, 14(3), 112–116.CrossRefGoogle Scholar
  41. Latała, R., & Matlak, D. (2017). Royen’s proof of the Gaussian correlation inequality. Geometric Aspects of Functional Analysis, 2169, 265–275.CrossRefGoogle Scholar
  42. Latour, B., & Woolgar, S. (1979). Laboratory life: The construction of scientific facts. Princeton: Princeton University Press.Google Scholar
  43. Maddy, P. (2011). Defending the axioms: On the philosophical foundations of set theory. Oxford: Oxford University Press.CrossRefGoogle Scholar
  44. Maddy, P. (2017). Set-theoretic foundations. In A. E. Caicedo, J. Cummings, P. Koellner, & P. B. Larson (Eds.), Foundations of mathematics: Logic at Harvard. Essays in Honor of Hugh Woodin’s 60th Birthday (pp. 289–322). Providence RI: American Mathematical Society.CrossRefGoogle Scholar
  45. Mahoney, M. S. (1994). The mathematical career of Pierre de Fermat 1601–1665. Princeton: Princeton University Press.Google Scholar
  46. Menary, R. (2015). Mathematical cognition: A case of enculturation. In T. Metzinger & J. M. Windt (Eds.), Open MIND. Frankfurt am Main: MIND Group.Google Scholar
  47. Netz, R. (1999). The shaping of deduction in Greek mathematics a study in cognitive history. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  48. Netz, R. (2009). Ludic proof: Greek mathematics and the Alexandrian aesthetic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  49. O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. New York: Broadway Books.Google Scholar
  50. Origgi, G., & Ciranna, S. (2017). The case of digital environments. In I. J. Kidd, J. Medina, & G. Pohlhaus (Eds.), The Routledge handbook of epistemic injustice. London: Routledge.Google Scholar
  51. Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica III, 7(1), 5–41.CrossRefGoogle Scholar
  52. Robertson, N., Sanders, D., Seymour, P., & Thomas, R. (1997). The four-colour theorem. Journal of Combinatorial Theory, Series B, 70(1), 2–44.CrossRefGoogle Scholar
  53. Rota, G. C. (1997). The phenomenology of mathematical beauty. Synthese, 111(2), 171–182.CrossRefGoogle Scholar
  54. Royen, T. (2014). A simple proof of the Gaussian correlation conjecture extended to multivariate gamma distributions. Far East Journal of Theoretical Statistics, 48(2), 139–145.Google Scholar
  55. Sosa, E. (1980). The raft and the pyramid: Coherence versus foundations in the theory of knowledge. Midwest Studies in Philosophy, 5(1), 3–26.CrossRefGoogle Scholar
  56. Tanswell, F. (2016). Proof, rigour and informality: A virtue account of mathematical knowledge. PhD thesis, University of St Andrews and University of Stirling.Google Scholar
  57. Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American mathematical Society, 30(2), 161–177.CrossRefGoogle Scholar
  58. Whitty, R. W. (2017). Some comments on multiple discovery in mathematics. Journal of Humanistic Mathematics, 7(1), 172–188.CrossRefGoogle Scholar
  59. Wolchover, N. (2017). A long-sought proof, found and almost lost. Quanta Magazine, 28th March 2017. Available online at https://www.quantamagazine.org/statistician-proves-gaussian-correlation-inequality-20170328/. Accessed 24 Oct 2018.
  60. Zagzebski, L. T. (1996). Virtues of the mind: An inquiry into the nature of virtue and the ethical foundations of knowledge. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Vrije Universiteit BrusselBrusselsBelgium
  2. 2.Mathematics EducationCentre Loughborough UniversityLoughboroughUK

Personalised recommendations