pp 1–23 | Cite as

An argument against global no miracles arguments

  • Florian J. BogeEmail author


Howson famously argues that the no-miracles argument, stating that the success of science indicates the approximate truth of scientific theories, is a base rate fallacy: it neglects the possibility of an overall low rate of true scientific theories. Recently a number of authors has suggested that the corresponding probabilistic reconstruction is unjust, as it concerns only the success of one isolated theory. Dawid and Hartmann, in particular, suggest to use the frequency of success in some field of research \(\mathcal {R}\) to infer a probability of truth for a new theory from \(\mathcal {R}\). I here shed doubts on the justification of this and similar moves and suggest a way to directly bound the probability of truth. As I will demonstrate, my bound can become incompatible with the assumption specific testing and Dawid and Hartmann’s estimate for success.


Base rate fallacy No miracles argument Scientific realism Inductive skepticism 



I thank Florian Fischer for getting me interested in the base rate fallacy, Michael Stöltzner for critical input at an earlier stage, Radin Dardashti for helpful advice on references and some discussion on the subject, and a number of anonymous referees for helpful comments on earlier versions.


A significant part of the research for this paper was conducted during my employment with the research unit The Epistemology of the Large Hadron Collider, funded by the German Research Foundation (DFG) (Grant FOR 2063).


  1. Ballentine, L. E. (2000). Quantum mechanics. A modern development. Singapore: World Scientific Publishing Co.Google Scholar
  2. Blatt, J. M., & Weisskopf, V. F. (1979). Theoretical nuclear physics. New York: Springer.CrossRefGoogle Scholar
  3. Boge, F. J. (2018). Quantum mechanics between ontology and epistemology. Cham: Springer International Publishing.Google Scholar
  4. Bowers, J. S. (2009). On the biological plausibility of grandmother cells: Implications for neural network theories in psychology and neuroscience. Psychological Review, 116(1), 220.CrossRefGoogle Scholar
  5. Bowers, J. S. (2017). Grandmother cells and localist representations: A review of current thinking. Language, Cognition and Neuroscience, 32(3), 257–273.CrossRefGoogle Scholar
  6. Callender, C., & Huggett, N. (2004). Introduction. In C. Callender & N. Huggett (Eds.), Physics meets philosophy at the Planck scale: Contemporary theories in quantum gravity (pp. 1–30). Cambridge: Cambridge University Press.Google Scholar
  7. Carnap, R. (1950). Logical foundations of probability. Chicago: University of Chicago Press.Google Scholar
  8. Caurier, E., Martinez-Pinedo, G., Nowacki, F., Poves, A., & Zuker, A. (2005). The shell model as a unified view of nuclear structure. Reviews of Modern Physics, 77(2), 427.CrossRefGoogle Scholar
  9. Cook, N. D. (2010). Models of the atomic nucleus. Unification through a lattice of nucleons (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar
  10. Dąbrowska, E. (2015). What exactly is universal grammar, and has anyone seen it? Frontiers in Psychology, 6, 852. Scholar
  11. Dawid, R., & Hartmann, S. (2017). The no miracles argument without the base rate fallacy. Synthese,. Scholar
  12. Dürr, D., Goldstein, S., & Zanghì, N. (2012). Quantum physics without quantum philosophy. Berlin: Springer.Google Scholar
  13. Einstein, A. (1915). Erklärung der perihelbewegung des merkur aus der allgemeinen relativitätstheorie. Sitzungsberichte der Preußischen Akademie der Wissenschaften 1915, XLVII, 831–839.Google Scholar
  14. Eisenstaedt, J. (2006). The curious history of relativity: How Einstein’s theory of gravity was lost and found again. Princeton: Princeton University Press.Google Scholar
  15. Elliot, J. P., & Lane, A. M. (1957). The nuclear shell-model. In S. Flügge (Ed.), Encyclopedia of physics volume XXXIX: Structure of atomic nuclei (pp. 241–410). Berlin: Springer.Google Scholar
  16. Goeppert-Mayer, M. (1950a). Nuclear configurations in the spin-orbit coupling model I. Empirical evidence. Physical Review, 78(1), 16.CrossRefGoogle Scholar
  17. Goeppert-Mayer, M. (1950b). Nuclear configurations in the spin-orbit coupling model II. Theoretical considerations. Physical Review, 78(1), 22.CrossRefGoogle Scholar
  18. Greiner, W., & Maruhn, J. A. (1996). Nuclear models. Berlin: Springer.CrossRefGoogle Scholar
  19. Hartmann, S. (1996). The world as a process. In R. Hegelsmann, U. Mueller, & K. G. Troitzsch (Eds.), Modelling and simulation in the social sciences from the philosophy of science point of view (pp. 77–100). Berlin: Springer.CrossRefGoogle Scholar
  20. Henderson, L. (2017). The no miracles argument and the base rate fallacy. Synthese, 194(4), 1295–1302.CrossRefGoogle Scholar
  21. Howson, C. (2000). Hume’s problem: Induction and the justification of belief. Oxford: Oxford University Press.CrossRefGoogle Scholar
  22. Howson, C. (2013). Exhuming the no-miracles argument. Analysis, 73(2), 205–211.CrossRefGoogle Scholar
  23. Howson, C., & Urbach, P. (2006). Scientific reasoning. The Bayesian approach (3rd ed.). Chicago: Open Court.Google Scholar
  24. Hoyningen-Huene, P. (2018). Are there good arguments against scientific realism? In A. Christian, D. Hommen, N. Retzlaff, & G. Schurz (Eds.), Philosophy of science (pp. 3–22). Cham: Springer International Publishing.CrossRefGoogle Scholar
  25. Ivanova, M. (2014). Is there a place for epistemic virtues in theory choice? Virtue epistemology naturalized (pp. 207–226). Berlin: Springer.CrossRefGoogle Scholar
  26. Kamal, A. (2014). Nuclear physics. Berlin: Springer.CrossRefGoogle Scholar
  27. Kim, J. E. (1991). Introduction to the standard model and neutral currents. In J. E. Kim (Ed.), The standard model and beyond: Proceedings of the ninth symposium on theoretical physics (p. 27). Singapore: World Scientific Publishing Company.CrossRefGoogle Scholar
  28. Krane, K. S. (1988). Introductory nuclear phyiscs. New York: Wiley.Google Scholar
  29. Laudan, L. (1984). Realism without the real. Philosophy of Science, 51(1), 156–162.CrossRefGoogle Scholar
  30. Li, H., & Ren, Z. (2014). Shell model calculations for the allowed Gamow–Teller \(\beta \)-decays of light nuclei. Science China Physics, Mechanics & Astronomy, 57(6), 1005–1012.CrossRefGoogle Scholar
  31. Lidz, J., & Gagliardi, A. (2015). How nature meets nurture: Universal grammar and statistical learning. Annual Review of Linguistics, 1(1), 333–353.CrossRefGoogle Scholar
  32. Little, J. (2008). The role of analogy in George Gamow’s derivation of drop energy. Technical Communication Quarterly, 17(2), 220–238.CrossRefGoogle Scholar
  33. Magnus, P. D., & Callender, C. (2004). Realist ennui and the base rate fallacy. Philosophy of Science, 71(3), 320–338.CrossRefGoogle Scholar
  34. Mayer-Kuckuk, T. (2002). Kernphysik. Eine Einführung (7th ed.). Stuttgart: Teubner.Google Scholar
  35. Menke, C. (2014). Does the miracle argument embody a base rate fallacy? Studies in History and Philosophy of Science Part A, 45(1), 103–108.CrossRefGoogle Scholar
  36. Morrison, M. (2011). One phenomenon, many models: Inconsistency and complementarity. Studies in History and Philosophy of Science Part A, 42(2), 342–351.CrossRefGoogle Scholar
  37. Poenaru, D., & Greiner, W. (1997). Experimental techniques in nuclear physics. Berlin: de Gruyter.CrossRefGoogle Scholar
  38. Psillos, S. (2009). Knowing the structure of nature: Essays on realism and explanation. Basingstoke: Palgrave Macmillan.CrossRefGoogle Scholar
  39. Putnam, H. (1975). Mathematics, matter and method. Philosophical papers (Vol. I). Cambridge: Cambridge University Press.Google Scholar
  40. Rothman, K., Greenland, S., & Lash, T. (2008). Modern epidemiology (3rd ed.). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  41. Schurz, G. (2014). Philosophy of science. A unified approach. New York: Routledge.Google Scholar
  42. Sprenger, J. (2016). The probabilistic no miracles argument. European Journal for Philosophy of Science, 6(2), 173–189.CrossRefGoogle Scholar
  43. Streletz, G., Zilges, A., Zamfir, N., Casten, R., Brenner, D., & Liu, B. (1996). Valence correlation scheme for single nucleon separation energies. Physical Review C, 54(6), R2815.CrossRefGoogle Scholar
  44. Stuewer, R. H. (1997). Gamow, alpha decay, and the liquid-drop model of the nucleus. In E. Harper, W. C. Parke, & Anderson, D. (Eds.) George Gamow symposium, ASP conference series (Vol. 129, pp. 29–43).Google Scholar
  45. Talbott, W. (2008). Bayesian epistemology. In E. N. Zalta (Ed.) The Stanford encyclopedia of philosophy. The Metaphysics Research Lab, Center for the Study of Language and Information (CSLI), Stanford University. Accessed 3 Sept 2018.
  46. van Fraassen, B. C. (1980). The scientific image. Oxford: Oxford University Press.CrossRefGoogle Scholar
  47. van Fraassen, B. C. (1989). Laws and symmetry. Oxford: Oxford University Press.CrossRefGoogle Scholar
  48. Vogt, K., Hartmann, T., & Zilges, A. (2001). Simple parametrization of single-and two-nucleon separation energies in terms of the neutron to proton ratio N/Z. Physics Letters B, 517(3), 255–260.CrossRefGoogle Scholar
  49. Weizsäcker, Cv. (1935). Zur Theorie der Kernmassen. Zeitschrift für Physik A: Hadrons and Nuclei, 96(7), 431–458.CrossRefGoogle Scholar
  50. Woithe, J., Wiener, G. J., & Van der Veken, F. F. (2017). Let’s have a coffee with the standard model of particle physics!. Physics Education, 52(3), 034001.CrossRefGoogle Scholar
  51. Worrall, J. (1985). Scientific discovery and theory-confirmation. In J. C. Pitt (Ed.), Change and progress in modern science (pp. 301–331). Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Interdisciplinary Centre for Science and Technology Studies (IZWT)Bergische Universität WuppertalWuppertalGermany
  2. 2.Institute for Theoretical Particle Physics and CosmologyRWTH Aachen UniversityAachenGermany

Personalised recommendations